The burden of chronic viral infections worldwide is extraordinarily high, with HIV-1 and HCV foremost causes of morbidity and mortality. Through a variety of immune evasion mechanisms these pathogens establish long-term chronic viremia in their infected hosts, leading to immune destruction in the case of HIV-1 and liver disease and hepatocellular carcinoma in the case of HCV. On the other hand, it is not clear why a significant portion of persons infected with these viruses are able to spontaneously control these infections and avoid their complications. Mechanisms underlying control of HCV and HIV-1 remain incompletely understood but have enormous implications for development of successful therapeutic approaches. There is already evidence for a genetic basis of spontaneous control of each of these viruses. Genome wide association surveys and other novel fine mapping scans of immune loci such as HLA will identify more genes contributing to spontaneous HCV clearance. Subsequent translation of genotype into phenotype using functional assays for HCV clearance will put these findings into biological context. HCV and HIV-1 controller datasets allow us a unique opportunity to identify genetic associations favorable to the control of either or both viruses. The goal of this proposal is to assess novel host genetic associations with HCV control and to elucidate their underlying mechanisms.
In Aim 1, we will leverage a GWAS of HCV spontaneous clearance. With our collaborators at the Broad Institute, we will perform a novel, high-throughput ImmunoChip scan that fine maps key immune and inflammatory loci postulated to be involved in autoimmune diseases including HLA loci. Building large tissue and PBMC banks will facilitate validation and functional studies. Studies proposed in Aim 2 exploit the existence of two unique controller datasets (HCV and HIV-1) using cross-disease analysis to determine whether there are unappreciated loci common to control of both infections. We will then confirm polymorphisms common to the control of both infections by examining a unique cohort of """"""""dual controllers,"""""""" co- infected persons who controlled both infections. Because of the PIs'collective expertise in innate and adaptive immunity, we are well poised to translate our findings into functional studies involving hepatocyte-based models (Aim 3), and PBMCs (via links to other projects and collaborations). We will leverage a large network of injection drug user cohorts that includes incident or acute HCV cases, many with the capacity to rapidly translate genetic findings into functional experiments.

Public Health Relevance

HCV and HIV-1 pose an enormous health care burden as paradigmatic chronic infections, with high rates of morbidity and mortality, particularly among injection drug users. Yet there are a small portion of patients who are capable of successful clearance or control of these infections. Using powerful genomic and high throughput technologies, we seek to comprehensively identify these host genetic determinants and, using our expertise in understanding the host response to infection, begin to understand the biological basis for the improved clearance of HCV or HIV-1 infection.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA033541-03
Application #
8531202
Study Section
Special Emphasis Panel (ZRG1-AARR-E (02))
Program Officer
Khalsa, Jagjitsingh H
Project Start
2011-09-15
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$640,563
Indirect Cost
$265,741
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Yin, Peiqi; Hong, Zhi; Yang, Xiaojie et al. (2016) A role for retromer in hepatitis C virus replication. Cell Mol Life Sci 73:869-81
Vergara, Candelaria; Thio, Chloe L; Thomas, David et al. (2016) Polymorphisms in melanoma differentiation-associated gene 5 are not associated with clearance of hepatitis C virus in a European American population. Hepatology 63:1061-2
Xu, George J; Kula, Tomasz; Xu, Qikai et al. (2015) Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348:aaa0698
Hajarizadeh, Behzad; Grady, Bart; Page, Kimberly et al. (2015) Patterns of hepatitis C virus RNA levels during acute infection: the InC3 study. PLoS One 10:e0122232
Hajarizadeh, B; Grady, B; Page, K et al. (2015) Factors associated with hepatitis C virus RNA levels in early chronic infection: the InC3 study. J Viral Hepat 22:708-17
King, Lindsay Y; Canasto-Chibuque, Claudia; Johnson, Kara B et al. (2015) A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut 64:1296-302
Doyle, J S; Deterding, K; Grebely, J et al. (2015) Response to treatment following recently acquired hepatitis C virus infection in a multicentre collaborative cohort. J Viral Hepat 22:1020-32
Onofrey, Shauna; Aneja, Jasneet; Haney, Gillian A et al. (2015) Underascertainment of acute hepatitis C virus infections in the U.S. surveillance system: a case series and chart review. Ann Intern Med 163:254-61
Sacks-Davis, Rachel; Grebely, Jason; Dore, Gregory J et al. (2015) Hepatitis C Virus Reinfection and Spontaneous Clearance of Reinfection--the InC3 Study. J Infect Dis 212:1407-19
Lin, Wenyu; Zhu, Chuanlong; Hong, Jian et al. (2015) The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. J Hepatol 62:1024-32

Showing the most recent 10 out of 26 publications