Pain is a subjective, multi-dimensional experience with sensory, affective and cognitive components. The affective (aversive) dimensions of pain are the main complaint of patients. We have attempted to capture and mechanistically evaluate affective dimensions of ongoing pain in preclinical settings. The aversiveness of pain provides strong motivational drive to seek relief. Thus, treatments known to relieve pain clinically produce conditioned place preference selectively in injured animals, inferring activation of brain reward pathways. This possibility is consistent with human data that relief of pain is rewarding. In this application, we ask whether, and how, relief of ongoing pain might modulate brain reward circuits. Additionally, we explore whether manipulations that selectively target affective, rather than sensory, components of pain also activate reward circuits. We will use a rat model of time-dependent incisional pain to explore the potential activation of reward pathways by pain relief resulting from either peripheral nerve block (block of afferent input) or manipulations within the rostral anterior cingulate cortex (rACC, i.e., modulation of aversiveness without altering nociceptive input). We will use anatomical (IHC), neurochemical (in vivo microdialysis), behavioral and imaging (animal fMRI) analyses to characterize the functional activation of the nucleus accumbens (NAc)(Aim 1) and/or ventral tegmental area (VTA)(Aim 2) by pain relief or the expectation of relief. Functional connectivity between the rACC and the NAc that underlies motivated behavior to seek relief will be studied in Aim 3. Understanding circuits that reflect relief of ongoing pain will help to identify new molecular targets that may be exploited for discovery of therapies directly targeting affective dimensions of pain that may have increased translational relevance and ultimately validating a biomarker of pain relief (i.e., analgesia).

Public Health Relevance

The affective (aversive) dimensions of pain are the main complaint of patients. Human data reveal that relief of pain is rewarding. Understanding the brain circuits that mediate aversiveness of pain, and the reward resulting from relief of pain, may help to speed discovery of new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
1R01DA034975-01
Application #
8431853
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (03))
Program Officer
Lynch, Minda
Project Start
2013-06-01
Project End
2018-02-28
Budget Start
2013-06-01
Budget End
2014-02-28
Support Year
1
Fiscal Year
2013
Total Cost
$567,918
Indirect Cost
$132,474
Name
University of Arizona
Department
Pharmacology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Navratilova, Edita; Morimura, Kozo; Xie, Jennifer Y et al. (2016) Positive emotions and brain reward circuits in chronic pain. J Comp Neurol 524:1646-52
Okun, Alec; McKinzie, David L; Witkin, Jeffrey M et al. (2016) Hedonic and motivational responses to food reward are unchanged in rats with neuropathic pain. Pain 157:2731-2738
Moutal, Aubin; Chew, Lindsey A; Yang, Xiaofang et al. (2016) (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain 157:1448-63
Xie, Jennifer Y; Chew, Lindsey A; Yang, Xiaofang et al. (2016) Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential. Pain 157:2124-40
Harasawa, Ichiro; Johansen, Joshua P; Fields, Howard L et al. (2016) Alterations in the rostral ventromedial medulla after the selective ablation of μ-opioid receptor expressing neurons. Pain 157:166-73
Remeniuk, Bethany; Sukhtankar, Devki; Okun, Alec et al. (2015) Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain 156:1864-73
Little, Joshua W; Ford, Amanda; Symons-Liguori, Ashley M et al. (2015) Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 138:28-35
Navratilova, Edita; Atcherley, Christopher W; Porreca, Frank (2015) Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci 38:741-50
Vreeland, Richard F; Atcherley, Christopher W; Russell, Wilfred S et al. (2015) Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal Chem 87:2600-7
Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana et al. (2015) Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 35:7264-71

Showing the most recent 10 out of 18 publications