The overall aim of this project is to understand the neural mechanisms of sound localization. These results will help us understand how the brain integrates auditory information from the two ears and produces orienting movements of the head, eyes, and ears to allow close visual and auditory inspection of targets. The experiments are designed to test the relative roles of two circuits that arise in the auditory brainstem to encode the cues necessary to localize sounds and generate the motor programs that orient the head, eyes and ears to the acoustic target. One circuit involves the midbrain nuclei of the inferior and superior colliculi with outputs to motor circuits in the brainstem from the deep layers of the superior colliculus. The other circuit involves projections from the inferior colliculus to the medial geniculate and primary auditory cortex. By inactivating the cortex or the midbrain, the relative roles of these two circuits in orienting behavior will be determined.
The second aim will examine the vestibulo-auricular reflex by testing for the reflex following inactivation of the semicircular canals in the vestibular system. We will plug the semicircular canals and hypothesize that this will greatly attenuate the reflex. In animals with mobile pinnae, it is hypothesized that the reflex serves to stabilize the auditory world just like the vestibulo-ocular reflex stabilizes images on the retina in the presence of head movements.
The final aim will study the circuitry that moves the pinna as a model motor system and compare it with the well-known oculomotor circuit. We will also examine the effect of immobilizing the pinna on sound localization performance.

Public Health Relevance

Spatial hearing is an important basic function of the auditory system. Defects in binaural function in human patients can lead to considerable difficulty in understanding conversations in a noisy room, which is the most common complaint of the hearing-impaired and can lead to severe social withdrawal.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC007177-10
Application #
8580196
Study Section
Auditory System Study Section (AUD)
Program Officer
Platt, Christopher
Project Start
2004-12-01
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
10
Fiscal Year
2014
Total Cost
$272,075
Indirect Cost
$86,945
Name
University of Wisconsin Madison
Department
Physiology
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Gai, Yan; Ruhland, Janet L; Yin, Tom C T (2014) Localization of click trains and speech by cats: the negative level effect. J Assoc Res Otolaryngol 15:789-800
Ruhland, Janet L; Yin, Tom C T; Tollin, Daniel J (2013) Gaze shifts to auditory and visual stimuli in cats. J Assoc Res Otolaryngol 14:731-55
Gai, Yan; Ruhland, Janet L; Yin, Tom C T (2013) Effects of forward masking on sound localization in cats: basic findings with broadband maskers. J Neurophysiol 110:1600-10
Gai, Yan; Ruhland, Janet L; Yin, Tom C T et al. (2013) Behavioral and modeling studies of sound localization in cats: effects of stimulus level and duration. J Neurophysiol 110:607-20
Tollin, Daniel J; McClaine, Elizabeth M; Yin, Tom C T (2010) Short-latency, goal-directed movements of the pinnae to sounds that produce auditory spatial illusions. J Neurophysiol 103:446-57
Dent, Micheal L; Tollin, Daniel J; Yin, Tom C T (2009) Influence of sound source location on the behavior and physiology of the precedence effect in cats. J Neurophysiol 102:724-34
Tollin, Daniel J; Ruhland, Janet L; Yin, Tom C T (2009) The vestibulo-auricular reflex. J Neurophysiol 101:1258-66
Joris, Philip; Yin, Tom C T (2007) A matter of time: internal delays in binaural processing. Trends Neurosci 30:70-8