Class VI myosins are perhaps the most unconventional of the unconventional myosin classes. They traffic in the reverse direction (minus end-directed on the actin filament) as compared to all other characterized myosins. Myosin VI also has an unusual and controversial extension of its short lever arm to increase its step size. It rearranges its converter conformation to achieve a large strok and dimerizes by an unknown mechanism. Myosin VI is involved in a number of cellular functions, but is essential for maintenance of the stereocilia of the hair cells and thus mutations in myosin VI can result in deafness. While it can function as a processive myosin motor, transporting cargoes in endocytosis, it also can function as a strain-dependent anchor that is involved in organizing structures such as the Golgi apparatus. Myosin VI is found as a monomer in cells, but functions optimally as a dimer. We have proposed that this is indicative of a novel form of regulation that may be shared by myosins VII and X~ namely, cargo-initiated dimerization.
The aims of the study are: (1) further delineate the lever arm extension of myosin VI, the regions responsible for dimerization, and the mechanism of myosin VI gating~ (2) begin to probe structural aspects of myosins VIIa and X, which appear to be regulated in cells by cargo-initiated dimerization, as is the case for myosin VI~ (3) further characterize myosin VI mutations that result in deafness using both biochemical and optical trap assays~ and (4) use cellular assays (Caco-2 cells) and mutants to define anchoring vs. transport roles of myosin VI.

Public Health Relevance

Mutations in myosin VI lead to deafness, and potentially to cardiomyopathy and deficits in the intestinal epithelium. Many of the design feature of myosin VI are unlike other myosin classes and are not fully understood, with a number of issues being controversial. This study will delineate the structural adaptation underlying myosin VI design and detail the impact of mutations that lead to deafness in humans. Furthermore, it seeks to determine if different mutations result in differential cellular deficits.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Watson, Bracie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Mukherjea, Monalisa; Ali, M Yusuf; Kikuti, Carlos et al. (2014) Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles. Cell Rep 8:1522-32
Nelson, Michael D; Rader, Florian; Tang, Xiu et al. (2014) PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 82:2085-91
Ali, M Yusuf; Previs, Samantha B; Trybus, Kathleen M et al. (2013) Myosin VI has a one track mind versus myosin Va when moving on actin bundles or at an intersection. Traffic 14:70-81
Llinas, Paola; Pylypenko, Olena; Isabet, Tatiana et al. (2012) How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009. FEBS J 279:551-62
Ali, M Yusuf; Kennedy, Guy G; Safer, Daniel et al. (2011) Myosin Va and myosin VI coordinate their steps while engaged in an in vitro tug of war during cargo transport. Proc Natl Acad Sci U S A 108:E535-41
Pylypenko, Olena; Song, Lin; Squires, Gaelle et al. (2011) Role of insert-1 of myosin VI in modulating nucleotide affinity. J Biol Chem 286:11716-23
Kim, Hyeongjun; Hsin, Jen; Liu, Yanxin et al. (2010) Formation of salt bridges mediates internal dimerization of myosin VI medial tail domain. Structure 18:1443-9
Reifenberger, Jeff G; Toprak, Erdal; Kim, Hyeongjun et al. (2009) Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm. Proc Natl Acad Sci U S A 106:18255-60
Mukherjea, Monalisa; Llinas, Paola; Kim, HyeongJun et al. (2009) Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell 35:305-15