In the near future most cochlear implant patients will hear with two 'ears'-- either with two cochlear implants (CI) or with a CI and a hearing aid in the opposite ear (combined electric and acoustic hearing or EAS). The goal of the research proposed here is to develop a tool for clinical decision making relative to these two interventions. Clinical decision making will depend critically on the nature of the tests and environments used to assess the benefit of having two ears participate in speech understanding. Standard clinical test environments can only approximate the real world environment of having sound surround the listener. Laboratory environments with multiple, spatially separated speakers can simulate real world environments but cannot be duplicated in the clinic for reasons of time, space and cost. In this project we will test EAS and bilateral CI patients in both standard and realistic test environments with the goal of creating a decision matrix that links data that can be easily collected in the clinic, e.g., CNC scores in quiet and the amount of residual hearing, with data that cannot be collected in the clinic, i.e., data collected with multiple, spatially separated loudspeakers. We propose to test bilateral CI patients and EAS patients in two realistic test environments using an 8-speaker 'surround sound system'which can simulate, with high fidelity, (i) a restaurant environment with speech babble as the noise, and (ii) a cocktail party environment with competing sentence material as the noise - a situation of 'informational'masking.

Public Health Relevance

This project will allow clinicians to make data-driven decisions about options for hearing restoration in patients who qualify for a cochlear implant. The data will allow clinicians to determine whether two cochlear implants, or an implant plus hearing aid, is the better option.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1-SRB-R (33))
Program Officer
Donahue, Amy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Arizona State University-Tempe Campus
Other Health Professions
Schools of Allied Health Profes
United States
Zip Code
Dorman, Michael F; Cook, Sarah; Spahr, Anthony et al. (2015) Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Hear Res 322:107-11
Gifford, René H; Hedley-Williams, Andrea; Spahr, Anthony J (2014) Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes. Int J Audiol 53:159-64
Gifford, René H; Grantham, D Wesley; Sheffield, Sterling W et al. (2014) Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hear Res 312:28-37
Dorman, Michael F; Loizou, Philip; Wang, Shuai et al. (2014) Bimodal cochlear implants: the role of acoustic signal level in determining speech perception benefit. Audiol Neurootol 19:234-8
Zhang, Ting; Dorman, Michael F; Gifford, Rene et al. (2014) Cochlear dead regions constrain the benefit of combining acoustic stimulation with electric stimulation. Ear Hear 35:410-7
Dorman, Michael F; Loiselle, Louise; Stohl, Josh et al. (2014) Interaural level differences and sound source localization for bilateral cochlear implant patients. Ear Hear 35:633-40
Sheffield, Sterling W; Gifford, René H (2014) The benefits of bimodal hearing: effect of frequency region and acoustic bandwidth. Audiol Neurootol 19:151-63
Yost, William A; Loiselle, Louise; Dorman, Michael et al. (2013) Sound source localization of filtered noises by listeners with normal hearing: a statistical analysis. J Acoust Soc Am 133:2876-82
Zhang, Ting; Spahr, Anthony J; Dorman, Michael F et al. (2013) Relationship between auditory function of nonimplanted ears and bimodal benefit. Ear Hear 34:133-41