The overall goal is to exploit motor learning principles in a novel way to enhance dysphagia rehabilitation in patients with dysphagia due to stroke. Dysphagia is swallowing impairment that can lead to serious illness or death due to ingested material entering the trachea (aspiration). This study addresses the mission of the agency, because it fosters development of scientific knowledge needed to enhance the health, productivity, independence, and quality-of-life of people with physical disabilities. Specifically, this study will determine whether lasting behavioral modifications after swallowing training occur with motor learning principles versus standard care. Motor learning principles emphasize continual kinematic assessment through biofeedback during training. However, continual kinematic assessment is rare in standard dysphagia care because swallowing kinematics require instrumentation such as videofluoroscopy (VF) to be seen. Since VF involves radiation exposure and higher costs, submental electromyography (sEMG) is widely used as biofeedback, although it does not image swallowing kinematics or confirm that a therapeutic movement is being trained. In this initial phase 1 clinical trial, we will compare three forms of biofeedback on training a swallowing maneuver called volitional laryngeal vestibule closure (vLVC), which emphasizes swallowing airway protection. VF biofeedback training will provide kinematic information about vLVC performance, incorporating motor learning principles. sEMG biofeedback training will provide non-kinematic information about vLVC performance and, thus, does not incorporate motor learning principles. We will also investigate a mixed biofeedback training, which involves VF biofeedback early on to establish the target kinematics of the vLVC maneuver, then reinforces what was learned with sEMG. Mixed biofeedback training is being examined because it is more clinically feasible than VF biofeedback training, while still incorporating motor learning principles during part of the vLVC training. We hypothesize that VF training will reduce swallowing impairment more than mixed training, but mixed training will reduce swallowing impairment more than sEMG training. Additionally, this study will investigate whether adjuvant techniques known to augment motor training (non-invasive neural stimulation and explicit reward tested independently), will augment outcomes of each of the proposed trainings. Our innovative experimental design is significant because it investigates motor learning principles within an ideal training (VF biofeedback) as well as within a clinically feasibe option (mixed biofeedback) to differentiate them from standard dysphagia training (sEMG), which has reported little to no improvements after intense motor training. Outcomes from our proposal may change the paradigm for treating swallowing and other internal functions such as speech and voice disorders.

Public Health Relevance

Our overall goal is to exploit motor learning principles and adjuvant techniques in a novel way to enhance dysphagia rehabilitation. The proposed study will investigate the effects three forms of biofeedback on training and determine whether adjuvant therapeutic techniques such as non- invasive neural stimulation and reward augment training outcomes. The findings from this proposal have the potential to change the paradigm of dysphagia rehabilitation among multiple disciplines.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC014285-02
Application #
8860172
Study Section
Motor Function, Speech and Rehabilitation Study Section (MFSR)
Program Officer
Shekim, Lana O
Project Start
2014-06-04
Project End
2015-07-31
Budget Start
2015-06-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Physical Medicine & Rehab
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Guedes, Renata; Azola, Alba; Macrae, Phoebe et al. (2017) Examination of swallowing maneuver training and transfer of practiced behaviors to laryngeal vestibule kinematics in functional swallowing of healthy adults. Physiol Behav 174:155-161
Calvo, Irene; Sunday, Kirstyn L; Macrae, Phoebe et al. (2017) Effects of chin-up posture on the sequence of swallowing events. Head Neck 39:947-959
Azola, Alba M; Sunday, Kirstyn L; Humbert, Ianessa A (2017) Kinematic Visual Biofeedback Improves Accuracy of Learning a Swallowing Maneuver and Accuracy of Clinician Cues During Training. Dysphagia 32:115-122
Macrae, Phoebe; Anderson, Cheryl; Humbert, Ianessa (2014) Mechanisms of airway protection during chin-down swallowing. J Speech Lang Hear Res 57:1251-8