Dental innervation is still not fully understood concerning its variety of nerve fibers, their interactions with pulp and dentin in normal teeth, and the mechanisms that cause hypersensitive dentin, postoperative pain, and difficult anesthesia for inflamed teeth. There is important plasticity in expression of sodium channels in injured cutaneous sensory neurons, driven by neurotrophic factors, but it is not known whether similar events underlie persistent neuroplasticity and pain after tooth injury. Teeth are an excellent model tissue for studying neuroinflammatory interactions in the periphery and their effects on trigeminal nerves, the ganglion and the central nervous. Tooth injury also affects non-dental neurons in the ganglion, in the brain stem and sometimes in contralateral trigeminal neurons by mechanisms that in part depend on paracrine signalling by nerve growth factor.
The Aims of this work are: (1) to determine the effects of specific types of tooth injury on sodium channel expression in dental neurons, neighboring uninjured trigeminal neurons and central neurons in relation to pain behavior, pulpal pathology and anti-inflammatory treatment, (2) to determine whether trigeminal sodium channel expression, pulpal reactions and behavior are affected in mutant mice that have altered neurotrophin mechanisms, and (3) to define the complexities of cells in the pulp, especially the odontoblast layer, in relation to expression of neurotrophins and calcium channels, in order to better understand the pulpal-nerve interactions in normal and injured teeth. We will use dental injury models in rats and mutant mice for analysis by behavioral testing, immunocytochemistry and in situ hybridization. There will be specific labeling of injured dental neurons by retrograde transport of fluorogold for comparison with uninjured labeled neurons. Our newly developed behavioral assays allow the characterization of pain periods in relation to pulpal and neural cytochemistry during anti-inflammatory treatment or in mutant mice. Our goal is to understand neuroinflammatory interactions in inflamed teeth in order to develop better treatments for dental pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE005159-23
Application #
6628412
Study Section
Special Emphasis Panel (ZRG1-IFCN-4 (01))
Program Officer
Kusiak, John W
Project Start
1979-05-01
Project End
2006-01-31
Budget Start
2003-02-01
Budget End
2006-01-31
Support Year
23
Fiscal Year
2003
Total Cost
$324,900
Indirect Cost
Name
University of Washington
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Byers, Margaret R; Westenbroek, Ruth E (2011) Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels. Arch Oral Biol 56:1199-220
Veerayutthwilai, O; Byers, M R; Pham, T-T T et al. (2007) Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol 22:5-13
Veerayutthwilai, Orapin; Luis, Nadyne A; Crumpton, Rosa M et al. (2006) Peripherin- and CGRP-immunoreactive nerve fibers in rat molars have different locations and developmental timing. Arch Oral Biol 51:748-60
Heyeraas, K J; Kim, S; Raab, W H et al. (1994) Effect of electrical tooth stimulation on blood flow, interstitial fluid pressure and substance P and CGRP-immunoreactive nerve fibers in the low compliant cat dental pulp. Microvasc Res 47:329-43
Sugaya, A; Chudler, E H; Byers, M R (1994) Uptake of exogenous fluorescent Di-I by intact junctional epithelium of adult rats allows retrograde labeling of trigeminal sensory neurons. Brain Res 653:330-4
Redd, P E; Byers, M R (1994) Regeneration of junctional epithelium and its innervation in adult rats: a study using immunocytochemistry for p75 nerve growth factor receptor and calcitonin gene-related peptide. J Periodontal Res 29:214-24
Nahin, R L; Byers, M R (1994) Adjuvant-induced inflammation of rat paw is associated with altered calcitonin gene-related peptide immunoreactivity within cell bodies and peripheral endings of primary afferent neurons. J Comp Neurol 349:475-85
Byers, M R (1994) Dynamic plasticity of dental sensory nerve structure and cytochemistry. Arch Oral Biol 39 Suppl:13S-21S
Byers, M R; Taylor, P E (1993) Effect of sensory denervation on the response of rat molar pulp to exposure injury. J Dent Res 72:613-8
Heyeraas, K J; Kvinnsland, I; Byers, M R et al. (1993) Nerve fibers immunoreactive to protein gene product 9.5, calcitonin gene-related peptide, substance P, and neuropeptide Y in the dental pulp, periodontal ligament, and gingiva in cats. Acta Odontol Scand 51:207-21

Showing the most recent 10 out of 38 publications