The proposed project aims to develop injectable, in situ hardening cell-polymer constructs for the repair of craniofacial bone defects. In addition to developing biomaterials well suited to this application, the project will also investigate the effect on bone regeneration of a number of critical material and cellular parameters, such that knowledge elucidated from the described studies can be broadly applied to other areas of tissue engineering. The first specific aim of the project is to synthesize and characterize novel injectable hydrogels that undergo physical gelation and chemical crosslinking at body temperature. These hydrogels will also contain calcium-binding domains that are hypothesized to both harden the material after injection and induce osteodifferentiation of encapsulated marrow stromal cells following matrix mineralization. A variety of methods to assess the physicochemical characteristics of the hydrogels will be used, and both in vitro and in vivo testing will be performed to evaluate cytocompatibility, stability, and degradation of the hydrogels. The second specific aim involves investigations of the effect different hydrogel formulations and the resultant physical parameters have on both encapsulated cell viability and bone regeneration within the well-established critical size rat calvarial defect model. Finally, the third specific aim is to investigate the effects that varying cellular parameters such as initial seeding density and the stage of osteodifferentiation of encapsulated marrow stromal cells have on the bone regenerative potential of the hydrogel constructs. In vivo studies are incorporated into each aim of the project such that, in keeping with the long-term goal of developing materials appropriate for clinical applications, efficacy with respect to bone regeneration and construct biocompatibility is assessed at each stage of the study. Project Narrative Craniofacial bone abnormalities, typically resulting from birth defects, cancer, or traumatic injuries, afflict many people worldwide and have been shown to greatly diminish the quality of life of both the patient and those around them. Currently, the only treatment options for correcting such abnormalities involve invasive and often repeated surgical efforts using either tissue grafting or some form of implantable biomaterial, many of which are not ideal for this application. The project described in this proposal aims to develop new composite biomaterials that 1) are injectable, thus eliminating or reducing the need for invasive surgery, and 2) promote bone regeneration, such that the need for tissue grafting is eliminated and natural bone is regenerated within a defect.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE017441-05
Application #
8217161
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Lumelsky, Nadya L
Project Start
2008-04-10
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2014-02-28
Support Year
5
Fiscal Year
2012
Total Cost
$323,099
Indirect Cost
$102,576
Name
Rice University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
050299031
City
Houston
State
TX
Country
United States
Zip Code
77005
Watson, Brendan M; Kasper, F Kurtis; Mikos, Antonios G (2014) Phosphorous-containing polymers for regenerative medicine. Biomed Mater 9:025014
Vo, Tiffany N; Ekenseair, Adam K; Kasper, F Kurtis et al. (2014) Synthesis, physicochemical characterization, and cytocompatibility of bioresorbable, dual-gelling injectable hydrogels. Biomacromolecules 15:132-42
Watson, Brendan M; Kasper, F Kurtis; Engel, Paul S et al. (2014) Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Biomacromolecules 15:1788-96
Lee, Esther J; Kasper, F Kurtis; Mikos, Antonios G (2014) Biomaterials for tissue engineering. Ann Biomed Eng 42:323-37
Tzouanas, Stephanie N; Ekenseair, Adam K; Kasper, F Kurtis et al. (2014) Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. J Biomed Mater Res A 102:1222-30
Ekenseair, Adam K; Kasper, F Kurtis; Mikos, Antonios G (2013) Perspectives on the interface of drug delivery and tissue engineering. Adv Drug Deliv Rev 65:89-92
Mountziaris, Paschalia M; Tzouanas, Stephanie N; Mikos, Antonios G (2012) Student Award for Outstanding Research Winner in the Ph.D. Category for the 9th World Biomaterials Congress, Chengdu, China, June 1-5, 2012: The interplay of bone-like extracellular matrix and TNF-? signaling on in vitro osteogenic differentiation of mese J Biomed Mater Res A 100:1097-106
Henslee, Allan M; Gwak, Dong-Ho; Mikos, Antonios G et al. (2012) Development of a biodegradable bone cement for craniofacial applications. J Biomed Mater Res A 100:2252-9
Martins, Ana M; Kretlow, James D; Costa-Pinto, Ana R et al. (2012) Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. J Biomed Mater Res A 100:599-612
Klouda, Leda; Perkins, Kevin R; Watson, Brendan M et al. (2011) Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater 7:1460-7

Showing the most recent 10 out of 24 publications