A major roadblock in regenerative medicine is the ability to resolve disease-associated inflammation and to optimize tissue regenerative capacity to prevent further tissue destruction secondary to inflammation or scarring. Recently, a major breakthrough in mesenchymal stem cells (MSCs) research identifies an intrinsic role of MSCs in immune-regulatory function. We have demonstrated that pro-inflammatory cytokines are required for immunosuppressive function of MSCs through the concerted action of chemokines, and nitric oxide, and that activated T cells can induce apoptosis of MSCs via the Fas/Fas L pathway. Our studies also have revealed that the immunosuppressive property of skin derived MSCs were tightly regulated by the local inflammatory niche mediated by the autocrine/paracrine IL17/IL6 axis, and therapeutic approaches targeting these distinct niche components resulted in suppression of excessive scar formation. Based on these observations, we explore the feasibility of isolating MSCs from human gingiva (hGMSCs), a unique oral tissue that functions both as a biological mucosal barrier and a component of the oral mucosal immunity. Interestingly, hGMSCs exhibit not only multipotent differentiation and self-renewal capacities but also possess superior immunosuppressive effect as compared to bone marrow mesenchymal stem cells (BMMSC), by inducing Tregs expansion and inhibiting Th17 cells, and consequently, suppress tissue destruction in our inflammation-related tissue injury/osteonecrosis model induced by bisphosphonate (BRONJ). We hypothesize that GMSCs are capable of playing dual roles in tissue repair including a protective role as an immunomodulator to inhibit tissue injury and a tissue regeneration role through their multipotent differentiation capacities. In this application, our interdisciplinary team with advanced specialties in stem cell biology, immunology, tissue repair/regeneration, and clinical therapies, proposes to elucidate the molecular mechanisms of inflammation- related tissue injury/degeneration, and develop a novel therapeutic approach using GMSCs to suppress inflammation and promote regeneration/reconstruction of diseased and injured oral and craniofacial tissues. Our objective will be addressed using three integrated specific aims: 1) To further delineate stem cell properties of hGMSCs at the single colony level;2) To determine whether hGMSCs are capable of immunomodulation and the underlying mechanisms;and 3) To explore the feasibility of targeting GMSCs to reduce inflammation and promote tissue regeneration in animal models of inflammation- related oral disorders/diseases. This study will substantially extend current knowledge of the immunomodulatory functions of GMSCs and provide critical pre-clinical data to test the feasibility and efficacy of novel therapeutic approach using GMSC to harness inflammation and enhance regeneration of inflammation-related or injured orofacial tissues.

Public Health Relevance

This study will explore the use of stem cells derived from the gingiva, a specialized oral tissue, to inhibit inflammation and its tissue destruction in order to develop an optimal approach for the repair and restoration of the injured orofacial tissues.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDE1-RW (11))
Program Officer
Lumelsky, Nadya L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Schools of Dentistry
Los Angeles
United States
Zip Code
Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian et al. (2014) Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng Part A 20:611-21
Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider et al. (2014) Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials 35:2642-50
Liu, Y; Wang, L; Liu, S et al. (2014) Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res 93:1124-32
Ling, Weifang; Zhang, Jimin; Yuan, Zengrong et al. (2014) Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res 74:1576-87
Chen, Qing; Shou, Peishun; Zhang, Liying et al. (2014) An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32:327-37
Liu, Yi; Yang, Ruili; Liu, Xibao et al. (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66-78
Zhang, J; Roberts, A I; Liu, C et al. (2013) A novel subset of helper T cells promotes immune responses by secreting GM-CSF. Cell Death Differ 20:1731-41
Wang, Lei; Zhao, Yinghua; Liu, Yi et al. (2013) IFN-ýý and TNF-* synergistically induce mesenchymal stem cell impairment and tumorigenesis via NF*B signaling. Stem Cells 31:1383-95
Yang, Ruili; Liu, Yi; Kelk, Peyman et al. (2013) A subset of IL-17(+) mesenchymal stem cells possesses anti-Candida albicans effect. Cell Res 23:107-21
Siclari, Valerie A; Zhu, Ji; Akiyama, Kentaro et al. (2013) Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone 53:575-86

Showing the most recent 10 out of 30 publications