Current sample size methods for multilevel and longitudinal data often get the wrong answer. Studies that are too small cannot achieve scientific goals. Studies that are too large expose human research participants to unnecessary harm. The ethical codes that bind NIH funded behavioral scientists doing research with human participants demand correct sample size selection. Flaws of current sample size methods are a critical barrier to progress. Behavioral scientists use community trials, longitudinal data, and multilevel models to compare diverse populations. Understanding addiction and gauging knowledge about head and neck cancer screening require measuring outcomes over time. The complex data yield complex variance patterns. Current software (such as Optimal Design) makes simplifying assumptions about the variance patterns, which may lead to the wrong sample size. No available software always gives the correct sample size analysis;the existing paradigm fails. There are three barriers to progress in designing multilevel and longitudinal studies: 1) inadequate tools to evaluate when current sample size methods fail;2) flawed methods and software to select sample size;and 3) insufficient training to find correct sample sizes. The successful completion of two aims will remove the three barriers.
The aims are 1) Create new sample size methods and software needed to accurately mirror multilevel and longitudinal models of normal, binary, and Poisson data common in studying health behavior in diverse populations and 2) Train behavioral scientists to use the new methods and software. Training will include template sample size analyses, tutorial publications, short courses, webinars and online tutorials. Better sample size calculations will produce better designed studies. Better designed studies will speed ethical, efficient, and effective behavioral research. Behavioral research lies at the heart of preventing addiction and cancer. Correct sample size selection is not merely a statistical nicety. The new methods will directly improve the health of millions of Americans.

Public Health Relevance

The ethics and cost of human research demands accurate sample size. Current sample size selection methods can fail with multilevel and longitudinal data. We will develop new sample size tools for behavioral scientists conducting prevention research in communities with diverse populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE020832-03
Application #
8391073
Study Section
Special Emphasis Panel (ZRG1-AARR-F (52))
Program Officer
Clark, David
Project Start
2010-12-09
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
3
Fiscal Year
2013
Total Cost
$526,303
Indirect Cost
$76,097
Name
University of Florida
Department
Other Health Professions
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E et al. (2016) Multivariate test power approximations for balanced linear mixed models in studies with missing data. Stat Med 35:2921-37
Guo, Yi; Pandis, Nikolaos (2015) Sample-size calculation for repeated-measures and longitudinal studies. Am J Orthod Dentofacial Orthop 147:146-9
Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J et al. (2015) Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes. Stat Med 34:3531-45
Brinton, John T; Ringham, Brandy M; Glueck, Deborah H (2015) An internal pilot design for prospective cancer screening trials with unknown disease prevalence. Trials 16:458
Andridge, Rebecca R; Shoben, Abigail B; Muller, Keith E et al. (2014) Analytic methods for individually randomized group treatment trials and group-randomized trials when subjects belong to multiple groups. Stat Med 33:2178-90
Simpson, Sean L; Edwards, Lloyd J; Styner, Martin A et al. (2014) Separability tests for high-dimensional, low sample size multivariate repeated measures data. J Appl Stat 41:2450-2461
Ringham, Brandy M; Alonzo, Todd A; Brinton, John T et al. (2014) Reducing decision errors in the paired comparison of the diagnostic accuracy of screening tests with Gaussian outcomes. BMC Med Res Methodol 14:37
Munjal, Aarti; Sakhadeo, Uttara R; Muller, Keith E et al. (2014) GLIMMPSE Lite: calculating power and sample size on smartphone devices. PLoS One 9:e102082
Simpson, Sean L; Edwards, Lloyd J; Styner, Martin A et al. (2014) Kronecker product linear exponent AR(1) correlation structures for multivariate repeated measures. PLoS One 9:e88864
Chi, Yueh-Yun; Muller, Keith E (2013) Two-Step Hypothesis Testing When the Number of Variables Exceeds the Sample Size. Commun Stat Simul Comput 42:1113-1125

Showing the most recent 10 out of 16 publications