The long-term objective of this application is to deliver a unique biomaterial that can easily be molded into place by a surgeon, and will resorb as it induces rapid tissue regeneration. Toward this objective, we invented a biomaterial based on colloidal gel technology, which we have demonstrated to be effective in calvarial defect regeneration. The key feature that distinguishes colloidal gels from the two major classes of scaffolding biomaterials (hydrogels and solid scaffolds) is their paste-like rheology, which in turn is attributed to electrostatic interaction of the nanoparticle constituents. Although this new class of scaffolds is highly versatile in its unbounded combination of possible synthetic and natural nanoparticles, we have elected to focus on a combination of naturally occurring materials with controlled release of bioactive signals. Therefore, the objective of this project is to develop a malleable material that can be spread into place in a cranial defect, while releasing bioactive factors and allowing native bone to penetrate and resorb the material. The corresponding central hypothesis is that the growth factor-loaded colloidal gels will regenerate bone in cranial defects significantly faster and more completely than unloaded colloidal gels or commercial hydroxyapatite bone fillers. To test this hypothesis, we propose three specific aims: 1) to synthesize and characterize novel colloidal gels with modulated rheological properties, 2) to engineer and refine colloidal gels in vitro, and 3) to determine the efficacy of colloidal gels in a rat cranial defect model. Building on our published characterization of prototype colloidal gels, our overall strategy will be to significantly expand our repertoire first by evaluating the rheological and release properties of a variety of combinations of specific sulfated glycosaminoglycans (GAGs, negatively charged) and hydroxyapatite nanoparticles (positively charged), which have been identified as an internally cohesive colloidal gel network. A specific subset of these combinations will then be thoroughly evaluated in vitro for their efficacy in promoting osteogenesis with rat bone marrow-derived mesenchymal stem cells (BMSCs). The most promising groups from these in vitro studies will be evaluated in critical-sized rat calvarial defects, with the project thereby culminating in the identification of the leading combination of GAGs, hydroxyapatite, and osteogenic and angiogenic signals for calvarial defect regeneration. Successful completion of this project will lay the foundation for an entirely new sub-field for tissue engineering scaffolding biomaterials. The true impact of this line of research is its extraordinary versatility and relatively straightforward set of design principles as a means to create bioresorbable, pastes of tunable consistency, with the capability for controlled release of bioactive signals. We and other investigators world- wide will be able to explore a seemingly infinite number of innovative combinations of interactive nanoparticles for applications beyond calvarial defect regeneration, from osteochondral regeneration to liver regeneration to any other conceivable application where such a material is desired.

Public Health Relevance

Reconstruction of craniofacial bone currently relies on materials that require surgical placement and that do not adequately facilitate regeneration of native bone. There is an urgent need to identify new materials that enable reconstruction of bone in general and the proposed research will investigate a unique pseudoplastic biomaterial for conducting rapid bone regeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE022472-02
Application #
8433328
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Lumelsky, Nadya L
Project Start
2012-03-01
Project End
2016-02-29
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
2
Fiscal Year
2013
Total Cost
$357,082
Indirect Cost
$90,682
Name
University of Kansas Lawrence
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Beck, Emily C; Barragan, Marilyn; Libeer, Tony B et al. (2016) Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Eng Part A 22:665-79
Beck, Emily C; Barragan, Marilyn; Tadros, Madeleine H et al. (2016) Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater 38:94-105
Sutherland, Amanda J; Detamore, Michael S (2015) Bioactive Microsphere-Based Scaffolds Containing Decellularized Cartilage. Macromol Biosci 15:979-89
Sutherland, Amanda J; Beck, Emily C; Dennis, S Connor et al. (2015) Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One 10:e0121966
Beck, Emily C; Lohman, Brooke L; Tabakh, Daniel B et al. (2015) Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions. Ann Biomed Eng 43:2569-76
Dennis, S Connor; Berkland, Cory J; Bonewald, Lynda F et al. (2015) Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng Part B Rev 21:247-66
Dennis, S Connor; Detamore, Michael S; Kieweg, Sarah L et al. (2014) Mapping glycosaminoglycan-hydroxyapatite colloidal gels as potential tissue defect fillers. Langmuir 30:3528-37
Fakhari, A; Berkland, C (2013) Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 9:7081-92
Wang, Qun; Gu, Zhen; Jamal, Syed et al. (2013) Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng Part A 19:2586-93