Saliva plays a major role in maintaining oral health. Patients with decreased saliva secretion (symptomatically, xerostomia) exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease and microbial infections. Despite recent improvements in treating xerostomia, few scientific advancements have occurred which can be clinically applied toward restoration of compromised salivary gland function. Attempts have been made to advance restorative treatments (via development of an artificial salivary gland using a variety of extracellular matrices). Nonetheless, such restorative treatment models have proven incomplete due to poor differentiation and poor specification of mechanisms underlying secretion. We believe a Fibrin hydrogel (FH) scaffold (linked to growth factors and extracellular matrix proteins in growth factor-reduced-Matrigel, [GFR- MG]) will allow acinar cells to differentiate and make possible construction of an artificial salivary gland. We have tried two approaches to produce differentiated acinar structures (i.e., as evidence by high amylase protein expression), using GFR-MG and FH. GFR-MG allows acinar cells to from organized three- dimensional (3D) structures capable of developing tight junctions (TJ);however, the matrix itself is tumorogenic. Likewise, FH are safe, but cells grown on this scaffold do not form 3D acinar structures. Moreover, cells grown on either GFR-MG or FH alone do not reach full differentiation, so they cannot be used to build an acinar structure. Interestingly, whe these scaffolds are combined (GFR-MG/FH), many of the issues observed when cells are grown on GFR-MG or FH alone apparently are resolved. Specifically, a 3D acinar structure is formed (as was the case with GFR-MG alone) and amylase expression is increased. It remains a problem, however, that the hybrid matrix (GFR-MG/FH) still retains tumorogenic properties of GFR- MG and thus is not useful for growth of an implantable acinar structure. Because amylase production is a fundamental indicator of cell differentiation, we intend to investigate the molecular mechanisms that enhance amylase expression and consequent polarized apical secretion in acinar 3D constructs grown on GFR- MG/FH. Our studies will determine the optimal concentration of GFR-MG and FH for organization of acinar differentiated structures allowing single salivary acinar cells to organize into differentiated 3D structures (Aim 1). Additionally, w will determine and isolate the GFR-MG growth factors responsible for amylase expression in acinar cells (Aim 2). Finally, we will immobilize growth factors and extracellular matrix proteins into FH (by chemical conjugation and lentiviral gene delivery) to evaluate their effects on salivary acinar differentiation and secretory function (Aim 3). These studies should lead to better therapeutic strategies to restore salivary gland dysfunction that contributes to xerostomia in patients with compromised salivary function.

Public Health Relevance

Proper salivary gland function is critical for oral health. Autoimmune disorders (such as Sj?gren's syndrome); genetic diseases (such as ectodermal dysplasia); and irradiation therapies (for head and neck cancers) cause salivary gland dysfunction and lead to severe dryness of the oral cavity. This project aims to create functional salivary acinar structures (using modified fibrin hydrogels); which could contribute to the construction of a transplantable artificial salivary gland.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
7R01DE022971-04
Application #
8932056
Study Section
Special Emphasis Panel (ZDE1-MH (14))
Program Officer
Melillo, Amanda A
Project Start
2012-07-16
Project End
2016-06-30
Budget Start
2014-08-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$342,815
Indirect Cost
$92,815
Name
University of Utah
Department
Type
Schools of Dentistry
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Nam, Kihoon; Jones, Joshua P; Lei, Pedro et al. (2016) Laminin-111 Peptides Conjugated to Fibrin Hydrogels Promote Formation of Lumen Containing Parotid Gland Cell Clusters. Biomacromolecules 17:2293-301
Nam, Kihoon; Maruyama, Christina L; Trump, Bryan G et al. (2016) Post-Irradiated Human Submandibular Glands Display High Collagen Deposition, Disorganized Cell Junctions, and an Increased Number of Adipocytes. J Histochem Cytochem 64:343-52
Sommakia, S; Baker, O J (2016) Regulation of inflammation by lipid mediators in oral diseases. Oral Dis :
Sommakia, Salah; Baker, Olga J (2016) Neurons Self-Organize Around Salivary Epithelial Cells in Novel Co-Culture Model. J Stem Cell Regen Biol 2:
Wang, Ching-Shuen; Wee, Yinshen; Yang, Chieh-Hsiang et al. (2016) ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. Sci Rep 6:24244
McCall, Andrew D; Baker, Olga J (2015) Characterization of Angiogenesis and Lymphangiogenesis in Human Minor Salivary Glands with Sjögren's Syndrome. J Histochem Cytochem 63:340-9
Suresh, Lakshmanan; Malyavantham, Kishore; Shen, Long et al. (2015) Investigation of novel autoantibodies in Sjogren's syndrome utilizing Sera from the Sjogren's international collaborative clinical alliance cohort. BMC Ophthalmol 15:38
Mellas, Rachel E; Leigh, Noel J; Nelson, Joel W et al. (2015) Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren's syndrome. J Histochem Cytochem 63:45-56
Easley, Justin T; Nelson, Joel W; Mellas, Rachel E et al. (2015) Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. J Rheum Dis Treat 1:
Mellas, R E; Kim, H; Osinski, J et al. (2015) NFIB regulates embryonic development of submandibular glands. J Dent Res 94:312-9

Showing the most recent 10 out of 18 publications