Research in the current grant period caused us to significantly revise our model of SNARE assembly, resulting in a new and much more specific hypothesis for the fusion mechanism. We now think assembly takes place in a series of well-defined discrete steps, which we call """"""""discrete zippering"""""""". The new data have come mainly from optical tweezers and biochemical experiments with the isolated proteins showing binary switch assembly behavior. Importantly, this discrete mechanism, unlike continuous zippering, creates discrete assembly intermediates which are natural pivot points for regulation. The discrete zippering concept is helpful as a guide to current research. Our main goal (Aims 1-3 and 5) is to rigorously test the new """"""""discrete zipper"""""""" model to validate or modify it. We will do this by systematically studying the physical chemical, functional, and physiological effects of targeted mutations in each of the discrete portions of the SNARE complex: the N-terminal domain (NTD), C-terminal domain (CTD), linker domain (LD), and the trans-membrane domain (TMD). Many mutations in NTD and CTD are already known that affect fusion physiology in some way (less attention has been paid to TMD and LD) but it is not known how they work molecularly to affect SNARE assembly because sophisticated physical chemical assays have not in general been used before in this connection. Our comprehensive combined physical-chemical and functional mutational analysis of CTD, LD and TMD will provide essential information to advance our understanding of membrane fusion to the next level, whatever the model. Our other goal (Aim 4) is to better understand how the essential gene product Munc18 facilitates the discrete assembly of NTD, inherently a non- physiologically slow process. New data suggest that Munc18 can act as a molecular chaperone to promote the assembly of fusion-competent all-parallel SNARE helical bundles and prevent incompetent anti-parallel arrangements.

Public Health Relevance

The long-term goal of research under this grant is to understand the mechanism of SNARE- dependent membrane fusion, a process vital for the secretion of insulin and the insulin response in tissues mobilizing glucose transporters, and even more broadly for many aspects of cell growth and cell-to-cell communication in the endocrine and nervous systems. The experiments we propose will reveal basic mechanisms that control the milliseconds before the fusion pore opens and expands, where key physiology and likely functional disease can occur. Broad impact is expected as new, basic concepts are developed that will apply to basic cell biology generally and to neurotransmitter and insulin release in particular.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Haft, Carol R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Anatomy/Cell Biology
Schools of Medicine
New Haven
United States
Zip Code
Bello, Oscar D; Auclair, Sarah M; Rothman, James E et al. (2016) Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. Langmuir 32:3015-23
Yang, Yang; Wang, Jing; Shigematsu, Hideki et al. (2016) Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat Chem 8:476-83
Xu, Weiming; Nathwani, Bhavik; Lin, Chenxiang et al. (2016) A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. J Am Chem Soc 138:4439-47
Li, Feng; Tiwari, Neeraj; Rothman, James E et al. (2016) Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion. Proc Natl Acad Sci U S A 113:10536-41
Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar et al. (2016) Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains. Sci Rep 6:27287
Wang, Yong Jian; Li, Feng; Rodriguez, Nicolas et al. (2016) Snapshot of sequential SNARE assembling states between membranes shows that N-terminal transient assembly initializes fusion. Proc Natl Acad Sci U S A 113:3533-8
Motta, Isabelle; Gohlke, Andrea; Adrien, Vladimir et al. (2015) Correction to Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock. Langmuir 31:9521
Xu, Weiming; Wang, Jing; Rothman, James E et al. (2015) Accelerating SNARE-Mediated Membrane Fusion by DNA-Lipid Tethers. Angew Chem Int Ed Engl 54:14388-92
Motta, Isabelle; Gohlke, Andrea; Adrien, Vladimir et al. (2015) Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock. Langmuir 31:7091-9
Li, Feng; Kümmel, Daniel; Coleman, Jeff et al. (2014) A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J Am Chem Soc 136:3456-64

Showing the most recent 10 out of 33 publications