The development of impaired renal function during sepsis predicts a poor outcome and increases the risk for mortality. The pathogenic mechanisms that underlie renal tubule dysfunction during sepsis are poorly understood and the identification of effective therapeutic approaches remains a priority. In preliminary studies, we demonstrate that absorption of HCO3- by the medullary thick ascending limb (MTAL) is inhibited by lipopolysaccharide (LPS). These studies provide the first evidence that bacterial molecules act directly through Toll-like receptors to impair the transport function of renal tubules, thereby identifying a new pathophysiological mechanism contributing to renal tubule dysfunction during bacterial infection. Monophosphoryl lipid A (MPLA) is a detoxified derivative of LPS that retains the parent compound's beneficial immunomodulatory activities without the proinflammatory side effects. Our preliminary studies show that treatment with MPLA attenuates kidney dysfunction in a mouse model of polymicrobial sepsis induced by cecal ligation and puncture (CLP) and prevents sepsis-induced impairment of MTAL HCO3- absorption. Accordingly, the Specific Aims are:
AIM I. Identify the transport and signaling mechanisms through which basolateral LPS inhibits HCO3- absorption in the MTAL. These experiments will test the hypothesis that basolateral LPS decreases HCO3- absorption by inhibiting the apical NHE3 Na+/H+ exchanger through activation of the ERK signaling pathway, mediated through a novel interaction of Toll-like receptor 4 (TLR4) and TLR2.
AIM II. Identify the transport and signaling mechanisms through which lumen LPS inhibits HCO3- absorption. These experiments will test the hypothesis that lumen LPS decreases HCO3- absorption by inhibiting basolateral NHE1 through activation of the PI3K-mTOR signaling pathway, mediated through TLR4.
AIM III. Determine mechanisms by which sepsis decreases HCO3- absorption in the MTAL. These experiments will test the hypothesis that CLP sepsis impairs MTAL HCO3- absorption through a novel "two hit" mechanism, involving the combination of a decrease in baseline transport capacity and potentiation of inhibition by LPS. We propose that sepsis-induced transport inhibition is mediated through activation of ERK and results in increased urinary HCO3- excretion that contributes to sepsis-induced metabolic acidosis.
AIM I V. Determine mechanisms by which MPLA protects against sepsis-induced MTAL transport inhibition. These experiments will test the hypothesis that MPLA stimulates the PI3K-Akt pathway through TLR4 and Trif, which prevents sepsis-induced inhibition of HCO3- absorption through downregulation of ERK. The studies proposed in this application will use a multidisciplinary approach to examine cellular and molecular mechanisms through which the bacterial molecule LPS impairs the transport function of the MTAL, the importance of these mechanisms in the pathogenesis of MTAL dysfunction during sepsis, and mechanisms through which the novel therapeutic agent MPLA protects against sepsis-induced alterations in MTAL function.

Public Health Relevance

Bacterial sepsis is a major cause of mortality in critically ill patients, accounting for more than 200,000 deaths per year in the United States and consuming considerable health resources. Acute kidney injury is a frequent and severe complication in human sepsis and the risk for death doubles when impaired kidney function accompanies sepsis. The goal of our research is to understand mechanisms by which sepsis impairs the function of renal tubules and to determine how the therapeutic agent monophosphoryl lipid A protects the kidney from sepsis-induced injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK038217-22
Application #
8277334
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Ketchum, Christian J
Project Start
1987-07-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
22
Fiscal Year
2012
Total Cost
$314,300
Indirect Cost
$108,875
Name
University of Texas Medical Br Galveston
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Watts 3rd, Bruns A; George, Thampi; Sherwood, Edward R et al. (2013) A two-hit mechanism for sepsis-induced impairment of renal tubule function. Am J Physiol Renal Physiol 304:F863-74
Watts 3rd, Bruns A; George, Thampi; Good, David W (2013) Lumen LPS inhibits HCO3(-) absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange. Am J Physiol Renal Physiol 305:F451-62
Good, David W; George, Thampi; Watts 3rd, Bruns A (2012) Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem 287:20208-20
Good, David W; George, Thampi; Watts 3rd, Bruns A (2011) High sodium intake increases HCO(3)- absorption in medullary thick ascending limb through adaptations in basolateral and apical Na+/H+ exchangers. Am J Physiol Renal Physiol 301:F334-43
Watts 3rd, Bruns A; George, Thampi; Sherwood, Edward R et al. (2011) Basolateral LPS inhibits NHE3 and HCOFormula absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb. Am J Physiol Cell Physiol 301:C1296-306
Good, David W; George, Thampi; Watts 3rd, Bruns A (2010) Toll-like receptor 2 mediates inhibition of HCO(3)(-) absorption by bacterial lipoprotein in medullary thick ascending limb. Am J Physiol Renal Physiol 299:F536-44
Good, David W; George, Thampi; Watts 3rd, Bruns A (2009) Lipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes. Am J Physiol Renal Physiol 297:F866-74
Good, David W; George, Thampi; Watts 3rd, Bruns A (2008) Nerve growth factor inhibits Na+/H+ exchange and formula absorption through parallel phosphatidylinositol 3-kinase-mTOR and ERK pathways in thick ascending limb. J Biol Chem 283:26602-11
Good, David W (2007) Nongenomic actions of aldosterone on the renal tubule. Hypertension 49:728-39
Good, David W; George, Thampi; Watts 3rd, Bruns A (2006) Nongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am J Physiol Cell Physiol 290:C757-63

Showing the most recent 10 out of 47 publications