Type 1 diabetes (T1D) develops when the insulin-secreting 2 cells in the pancreas are depleted by an autoimmune process of unknown origin. Development of effective preventive therapies for T1D could be enhanced by a better understanding of the underlying disease mechanism, particularly events occurring during the extended pre-clinical period. Such considerations have motivated our studies over the last 15 years, supported largely by this single grant, directed toward identifying the genetic risk factors that might have predictive value and/or provide novel insights into disease etiology and targets for preventive therapy. Over the current cycle of this grant we have continued to pursue linkage studies in T1D but, with the advent of new genomics tools, have shifted our primary efforts toward association-based studies and functional characterization of loci identified by such studies. We tested for association of a number of candidate genes with T1D. For one of these genes, PTPN22, we extended these studies to identify phenotypes in T1D patients. We also completed the largest genome-wide scan for linkage in T1D families (N=2,496) to date, identifying a novel T1D risk locus via family-based association testing in the process. We have also completed a genome-wide association scan (GWAS) of T1D cases and controls which we combined with data from prior GWAS studies by the GoKinD and WTCCC (a total of 7,514 cases and 9,045 controls). The results of this meta-analysis more than doubles the number of established and replicated genomic regions containing T1D risk loci (N = 42). Among the numerous genomic regions identified in this study as associated with T1D we have chosen to focus our new studies on three, 1p13.2, 12q24.12 and 21q22.3, containing the candidate genes PTPN22, UBASH3A, PTPN11 and LNK, which we hypothesize may increase risk for T1D by modulating intracellular signaling from the TCR. In our first two specific aims, we will characterize genetic variation in the 12q24.12 and 21q22.3 regions by re-sequencing and fine-mapping with single nucleotide polymorphisms (SNPs). In our third specific aim, we will investigate the mechanism of action of risk variants at all of these loci, testing both the cellular effects of individual variants transfected into cell lines, and the broader phenotypic consequences in T1D patients and controls. Our success at identifying T1D risk loci during the previous funding cycle allows us to move away from efforts directed at simply enumerating and identifying the number of loci that contribute to T1D and towards mechanistic studies directed at understanding how these loci predispose individuals to the development of T1D. Identification and characterization of the risk variants at these loci, as proposed here, will provide novel insights into T1D pathology and may provide new predictive tools or targets for therapy in T1D.

Public Health Relevance

Type 1 diabetes (T1D) develops when the insulin-secreting cells in the pancreas are depleted by an autoimmune process of unknown origin. While insulin treatment for T1D is life-saving, development of effective preventive therapies could be enhanced by a better understanding of the underlying disease mechanism, particularly events occurring during the extended pre-clinical period. The proposed studies in this application will characterize newly discovered genetic risk loci for T1D which may serve as useful biomarkers for prediction of disease or as targets for therapy.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IMM-J (02))
Program Officer
Akolkar, Beena
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
Schools of Medicine
United States
Zip Code
Gorman, Jacquelyn A; Hundhausen, Christian; Errett, John S et al. (2017) The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat Immunol 18:744-752
Ge, Yan; Paisie, Taylor K; Newman, Jeremy R B et al. (2017) UBASH3A Mediates Risk for Type 1 Diabetes Through Inhibition of T-Cell Receptor-Induced NF-?B Signaling. Diabetes 66:2033-2043
Ge, Yan; Onengut-Gumuscu, Suna; Quinlan, Aaron R et al. (2016) Targeted Deep Sequencing in Multiple-Affected Sibships of European Ancestry Identifies Rare Deleterious Variants in PTPN22 That Confer Risk for Type 1 Diabetes. Diabetes 65:794-802
Onengut-Gumuscu, Suna; Chen, Wei-Min; Burren, Oliver et al. (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47:381-6
Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D et al. (2014) A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol 38:661-70
Fløyel, Tina; Brorsson, Caroline; Nielsen, Lotte B et al. (2014) CTSH regulates ?-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A 111:10305-10
Tomlinson 4th, M Joseph; Pitsillides, Achilleas; Pickin, Rebecca et al. (2014) Fine mapping and functional studies of risk variants for type 1 diabetes at chromosome 16p13.13. Diabetes 63:4360-8
Howson, Joanna M M; Cooper, Jason D; Smyth, Deborah J et al. (2012) Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:3012-7
Evanko, Stephen P; Potter-Perigo, Susan; Bollyky, Paul L et al. (2012) Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol 31:90-100
Bollyky, Paul L; Bogdani, Marika; Bollyky, Jennifer B et al. (2012) The role of hyaluronan and the extracellular matrix in islet inflammation and immune regulation. Curr Diab Rep 12:471-80

Showing the most recent 10 out of 41 publications