The molecular nature of insulin resistance in human muscle is still incompletely defined. Recent results from mass spectrometry experiments performed to analyze serine/threonine phosphorylation of IRS-1 from insulin resistant human muscle now compel us to discover how changes in S/T phosphorylation in human insulin resistance affect the association of IRS-1 with its binding partners. Toward this, we propose 1) to use Surface Plasmon Resonance techniques to determine how site-specific serine/threonine phosphorylation of IRS-1 alters the kinetics of the interaction of IRS-1 with its binding partners. We will employ surface Plasmon resonance techniques to quantify the kinetics of association of IRS-1 binding partners with synthetic tyrosine- phosphorylated IRS-1 peptides that also are phosphorylated at candidate S/T residues informed by our previous studies. In addition, reversible acetylation of proteins is gaining prominence as a mechanism that regulates mitochondrial. Preliminary data indicate that acetylation of mitochondrial proteins in humans is regulated by muscle contraction and is dysregulated in insulin resistance. Therefore we also propose 2) to use a combination of clinical research and mass spectrometry techniques to determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypothesis that mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle. Using these techniques we also propose 3) to determine how acetylation of mitochondrial adenine nucleotide translocase (ANT1) at lysines 10, 23, and 92 regulates ANT1 structure and function. Finally, we propose 4) to use a combination of molecular modeling and in vitro assays together with the approach developed in Aim 3 to characterize the role of acetylation in other mitochondrial proteins. Protein targets for this aim will be prioritized based on the potential role of the protein in insulin resistance or mitochondrial function as well as dysregulation of its acetylation state in insulin resistant muscle.

Public Health Relevance

Insulin resistance underlies the major public health problems of obesity, type 2 diabetes mellitus, and cardiovascular disease. Understanding the molecular nature of this abnormality in humans will be a key to developing and assessing the effectiveness of new treatments for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK047936-18
Application #
8610291
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Laughlin, Maren R
Project Start
1994-09-30
Project End
2017-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
18
Fiscal Year
2014
Total Cost
$543,251
Indirect Cost
$133,870
Name
Arizona State University-Tempe Campus
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
943360412
City
Tempe
State
AZ
Country
United States
Zip Code
85287
Boyle, Kristen E; Hwang, Hyonson; Janssen, Rachel C et al. (2014) Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle. PLoS One 9:e106872
DeMenna, Jacob; Puppala, Sobha; Chittoor, Geetha et al. (2014) Association of common genetic variants with diabetes and metabolic syndrome related traits in the Arizona Insulin Resistance registry: a focus on Mexican American families in the Southwest. Hum Hered 78:47-58
Mielke, Clinton; Lefort, Natalie; McLean, Carrie G et al. (2014) Adenine nucleotide translocase is acetylated in vivo in human muscle: Modeling predicts a decreased ADP affinity and altered control of oxidative phosphorylation. Biochemistry 53:3817-29
Chakkera, Harini A; Mandarino, Lawrence J (2013) Calcineurin inhibition and new-onset diabetes mellitus after transplantation. Transplantation 95:647-52
Hussey, Sophie E; Sharoff, Carrie G; Garnham, Andrew et al. (2013) Effect of exercise on the skeletal muscle proteome in patients with type 2 diabetes. Med Sci Sports Exerc 45:1069-76
Langlais, P; Yi, Z; Finlayson, J et al. (2011) Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54:2878-89
Everman, Sarah; Yi, Zhengping; Langlais, Paul et al. (2011) Reproducibility of an HPLC-ESI-MS/MS method for the measurement of stable-isotope enrichment of in vivo-labeled muscle ATP synthase beta subunit. PLoS One 6:e26171
Geetha, Thangiah; Langlais, Paul; Luo, Moulun et al. (2011) Label-free proteomic identification of endogenous, insulin-stimulated interaction partners of insulin receptor substrate-1. J Am Soc Mass Spectrom 22:457-66
Coletta, Dawn K; Mandarino, Lawrence J (2011) Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab 301:E749-55
Langlais, Paul; Yi, Zhengping; Mandarino, Lawrence J (2011) The identification of raptor as a substrate for p44/42 MAPK. Endocrinology 152:1264-73

Showing the most recent 10 out of 51 publications