The Epidermal Growth Factor Receptor (EGFR; ErbB1) is widely expressed in the kidney in both glomeruli and tubules. Our previous studies have elucidated a dichotomous role for EGFR activation in kidney injury, with regulated activation following acute kidney injury (AKI) serving as an important and necessary step for recovery but with persistent and dysregulated activation mediating progressive glomerular and tubulointerstitial injury in progressive kidney diseases. Genetic or pharmacologic inhibition of EGFR activation can be an effective therapeutic intervention in experimental models of chronic kidney disease. Translating this insight into human disease is complicated by known skin side effects of current EGFR tyrosine kinase inhibitors or receptor antibodies. However, given its potential biological relevance, mechanisms to inactivate the EGFR pathway still hold great promise as a therapeutic option, especially if more selective targeting of downstream signaling pathways can be achieved. The mechanisms of EGFR activation in response to acute or chronic kidney injury remain incompletely understood and may involve both ligand- dependent and ligand-independent mechanisms. Furthermore, although recent studies have identified novel mechanisms for augmenting or inhibiting EGFR membrane localization and activation, whether these mechanisms play a role in kidney injury is unknown. The mechanisms and signaling pathways underlying progressive glomerulopathy and tubulointerstitial fibrosis secondary to aberrant EGFR signaling in chronic disease have not be elucidated, nor is is It known whether the same mechanisms mediate EGFR-dependent recovery from AKI. Thus, our overall goal is to determine the molecular mechanisms underlying EGFR-mediated effects in both acute and chronic kidney disease in order to identify more selective therapeutic targets. To accomplish this goal, we propose three specific aims:1) Determine the mechanisms by which EGFR is activated in response to acute or chronic kidney injury. In this aim we will examine both ligand-dependent and ligand- independent mechanisms of EGFR activation in AKI and CKD; 2) determine the mechanisms by which EGFR mediates kidney fibrosis in chronic kidney injury. We will determine the role of EGFR in TGF- production and myofibroblast induction and the role of aberrant YAP/TAZ signaling in EGFR- mediated renal fibrosis; and 3) Determine the mechanisms by which EGFR activation inhibits autophagy. We wil determine the mechanism(s) by which EGFR activation inhibits AMP kinase activity and inhibits autophagy in diabetic nephropathy.

Public Health Relevance

The proposed studies will investigate the role of epidermal growth factor receptor (EGFR) activation in both acute kidney injury and in diabetic nephropathy. The studies will investigate the role of ligand-dependent and ligand-independent EGFR activation in kidney disease, the mechanisms by which chronic EGFR activation mediates glomerulosclerosis and tubulointerstitial fibrosis and mechanisms and consequences of EGFR inhibition of autophagy in diabetic nephropathy.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Rys-Sikora, Krystyna E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Wang, Xin; Yao, Bing; Wang, Yinqiu et al. (2017) Macrophage Cyclooxygenase-2 Protects Against Development of Diabetic Nephropathy. Diabetes 66:494-504
Zhang, Ming-Zhi; Wang, Xin; Wang, Yinqiu et al. (2017) IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int 91:375-386
Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon et al. (2016) Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 56:627-53
Zeng, Fenghua; Kloepfer, Lance A; Finney, Charlene et al. (2016) Specific endothelial heparin-binding EGF-like growth factor deletion ameliorates renal injury induced by chronic angiotensin II infusion. Am J Physiol Renal Physiol 311:F695-F707
Chiba, Takuto; Skrypnyk, Nataliya I; Skvarca, Lauren Brilli et al. (2016) Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 27:495-508
Perrien, Daniel S; Saleh, Mohamed A; Takahashi, Keiko et al. (2016) Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrol 17:24
Chen, Jianchun; Harris, Raymond C (2016) Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. J Am Soc Nephrol 27:1689-700
Wang, Feng; Kopylov, David; Zu, Zhongliang et al. (2016) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76:1531-1541
Harris, Raymond C; Cheng, Huifang (2016) Telomerase, Autophagy and Acute Kidney Injury. Nephron 134:145-148
Choma, David P; Vanacore, Roberto; Naylor, Helen et al. (2016) Aquaporin 11 variant associates with kidney disease in type 2 diabetic patients. Am J Physiol Renal Physiol 310:F416-25

Showing the most recent 10 out of 98 publications