The GLUT4 facilitative glucose transporter is the major insulin- responsive isoform and is primarily expressed in muscle and adipose tissue, the two tissue types responsible for the maintenance of normal glucose homeostasis in the post-prandial state. The regulation of the GLUT4 glucose transporter occurs at multiple levels, including transcription, translation, and intracellular vesicular trafficking. Alterations in various aspects of these processes directly lead to peripheral tissue insulin resistance diabetes results from an inability of insulin to stimulate glucose uptake and GLUT4 translocation from intracellular storage sites to the cell surface membrane, despite the presence of normal cells of GLUT4 protein. Based upon the central role of GLUT4 vesicle trafficking in the pathophysiology associated with insulin resistance, we have proposed a series of studies to specifically identify and characterize the functional role of a novel syntaxin 4 binding protein, Synip which is directly involved in the intracellular trafficking of the GLUT4 containing vesicles. This will be accomplished by determining the interaction of Synip with the other established syntaxin 4 binding proteins (Munc18c, SNAP23 and VAMP2) in regulation insulin- stimulated GLUT4 translocation. Since our preliminary data demonstrates that insulin rapidly induces the dissociation of the Synip-syntaxin 4 complex, we will examine the signal transduction pathways and potential allosteric modifications of Synip responsible for its reduction in syntaxin 4 binding affinity. To identify the cellular trafficking patterns of GLUT4 vesicles and regulation by Synip, we will take advantage of GLUT4- enhanced Green Fluorescent Protein (eGFP) fusions that can be used to observe the movement of GLUT4 containing vesicles in real time. Using this type of approach we have been able to distinguish between GLUT4 vesicle docking versus GLUT4 vesicle fusion with the plasma membrane. These events will be biochemically defined by performing a detailed analysis of plasma membrane GLUT4 association using intact cell immunofluorescence, immunoelectron microscopy, subcellular fractionation, plasma membrane sheet isolation and glucose transport activity. We will then use this system to distinguish between GLUT4 vesicle docking versus fusion and to assess the functional role of Synip in regulating these processes. In this manner, we hope to establish several of the key biochemical and cell biological mechanisms regulating the insulin-stimulated trafficking/docking/fusion of GLUT4 containing vesicles.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK055811-05
Application #
6702300
Study Section
Endocrinology Study Section (END)
Program Officer
Blondel, Olivier
Project Start
2000-02-01
Project End
2005-01-31
Budget Start
2004-02-01
Budget End
2005-01-31
Support Year
5
Fiscal Year
2004
Total Cost
$333,106
Indirect Cost
Name
State University New York Stony Brook
Department
Pharmacology
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Huang, Ping; Yeku, Oladapo; Zong, Haihong et al. (2011) Phosphatidylinositol-4-phosphate-5-kinase alpha deficiency alters dynamics of glucose-stimulated insulin release to improve glucohomeostasis and decrease obesity in mice. Diabetes 60:454-63
Capilla, Encarnación; Díaz, Mònica; Hou, June Chunqiu et al. (2010) High basal cell surface levels of fish GLUT4 are related to reduced sensitivity of insulin-induced translocation toward GGA and AS160 inhibition in adipocytes. Am J Physiol Endocrinol Metab 298:E329-36
Zong, Haihong; Bastie, Claire C; Xu, Jun et al. (2009) Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem 284:4679-88
Li, Lin V; Bakirtzi, Kyriaki; Watson, Robert T et al. (2009) The C-terminus of GLUT4 targets the transporter to the perinuclear compartment but not to the insulin-responsive vesicles. Biochem J 419:105-12, 1 p following 112
Hou, June Chunqiu; Williams, Dumaine; Vicogne, Jerome et al. (2009) The glucose transporter 2 undergoes plasma membrane endocytosis and lysosomal degradation in a secretagogue-dependent manner. Endocrinology 150:4056-64
Procino, Giuseppe; Barbieri, Claudia; Tamma, Grazia et al. (2008) AQP2 exocytosis in the renal collecting duct -- involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 121:2097-106
Williams, Dumaine; Pessin, Jeffrey E (2008) Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes. J Cell Biol 180:375-87
Hou, June Chunqiu; Pessin, Jeffrey E (2007) Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol 19:466-73
Capilla, Encarnacion; Suzuki, Naoko; Pessin, Jeffrey E et al. (2007) The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartmen Mol Endocrinol 21:3087-99
Min, Le; Leung, Yuk M; Tomas, Alejandra et al. (2007) Dynamin is functionally coupled to insulin granule exocytosis. J Biol Chem 282:33530-6

Showing the most recent 10 out of 25 publications