The OBJECTIVES of this application are to advance understanding of genetic pathways in hepatic fatty acid (FA) metabolism that influence the development and regression of hepatic steatosis. The BACKGROUND to this proposal is our elucidation of critical gene-environment interactions that underlie the metabolic pathogenesis of hepatic steatosis, a requisite metabolic precursor to nonalcoholic fatty liver disease. In this application we will focus on pathways modulated by tissue-specific deletion of liver fatty acid binding protein (L-Fabp) and microsomal triglyceride transfer protein (Mttp), each of which play a dominant role in hepatic lipid metabolism. Our OVERARCHING HYPOTHESIS is that L- Fabp regulates metabolic trafficking of FA, cholesterol and bile acids and, in concert with Mttp, modulates substrate utilization for lipoprotein secretion versus storage. Our PRELIMINARY DATA demonstrate that L-Fabp-/- mice are protected against hepatic steatosis following a prolonged fast, and against obesity and hepatic steatosis when fed high saturated fat (SF) diets. We further identified kinetic defects in both hepatic and intestinal FA uptake, re-esterification and secretion in L-Fabp-/- mice. Based on these findings, studies in AIM 1 will ask, "How does L-Fabp deletion protect against high SF diet induced obesity and hepatic steatosis?" Other work demonstrated that FAs promote coordinated transcriptional regulation of hepatic L-Fabp and Mttp. L-Fabp-/- mice demonstrate attenuated hepatic steatosis with pharmacologic inhibition of Mttp, suggesting that FA trafficking via L-Fabp may be a requisite step in their metabolic channeling for storage as well as for utilization in VLDL assembly and secretion. Based on these findings, studies in AIM 2 will ask, "How does L-Fabp interact with Mttp to modulate FA trafficking for VLDL production versus storage and is this mediated in a tissue-specific manner?" Quantitative trait mapping identified a chromosomal locus colocalizing with L-Fabp, as a positional candidate for gallstone susceptibility in mice. We demonstrate that L-Fabp-/- mice are dramatically more susceptible to lithogenic diet (LD)-induced gallstones compared to C57BL/6 congenic controls with a phenotype including increased serum and hepatic free cholesterol, increased bile acid pool size and decreased fecal bile acid excretion. These findings suggest that LD-fed L-Fabp-/- mice manifest alterations in both hepatic cholesterol metabolism and biliary lipid secretion as well as changes in intestinal bile acid (BA) metabolism. Based on these findings, studies in AIM 3 will ask, "How does L- Fabp deletion predispose to gallstone susceptibility and alter enterohepatic BA and cholesterol flux?" Taken together, these studies will provide continued insight into the tissue-specific regulation and pathways of FA utilization relevant to both the pathogenesis and reversal of hepatic steatosis, as well as to cholesterol gallstone formation.

Public Health Relevance

While much is known about the clinical features of NAFLD, relatively little is known about the genetic pathways that predict individual susceptibility to high fat diet-induced hepatic steatosis and specifically the metabolic origins and functional compartmentalization/biological significance of the FA species that accumulate. There is also a paucity of information concerning the integrated roles of intestinal and hepatic FA flux, the factors that regulate the metabolic dialog between de novo lipogenesis and utilization of plasma derived FA, and how these different sources of FA substrate influence the balance between storage versus VLDL production and biliary lipid secretion. Our experiments will use novel and unique mutant mouse genetic models to probe distinct metabolic and tissue-specific pathways of FA utilization and elucidate the adaptive mechanisms that influence development and regression of hepatic steatosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK056260-14
Application #
8286400
Study Section
Special Emphasis Panel (ZRG1-DKUS-G (03))
Program Officer
Serrano, Jose
Project Start
1999-09-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
14
Fiscal Year
2012
Total Cost
$324,021
Indirect Cost
$110,849
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Xie, Yan; Fung, Ho Yee Joyce; Newberry, Elizabeth P et al. (2014) Hepatic Mttp deletion reverses gallstone susceptibility in L-Fabp knockout mice. J Lipid Res 55:540-8
Olszak, Torsten; Neves, Joana F; Dowds, C Marie et al. (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497-502
Ong, Kuok Teong; Mashek, Mara T; Davidson, Nicholas O et al. (2014) Hepatic ATGL mediates PPAR-? signaling and fatty acid channeling through an L-FABP independent mechanism. J Lipid Res 55:808-15
Liang, Zhe; Xie, Yan; Dominguez, Jessica A et al. (2014) Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice. PLoS One 9:e101828
de Vries, Simone; Jeffe, Donna B; Pruitt, Sandi L et al. (2014) Patient, hospital, and geographic disparities associated with comanagement during hospitalization for colorectal cancer surgery. J Hosp Med 9:226-31
Schootman, M; Lian, M; Pruitt, S L et al. (2014) Hospital and geographic variability in two colorectal cancer surgery outcomes: complications and mortality after complications. Ann Surg Oncol 21:2659-66
Schootman, Mario; Lian, Min; Pruitt, Sandi L et al. (2014) Hospital and geographic variability in thirty-day all-cause mortality following colorectal cancer surgery. Health Serv Res 49:1145-64
Kushnir, Vladimir M; Nalbantoglu, Ilke; Watson, Rao et al. (2014) Advanced colorectal adenomas in patients under 45 years of age are mostly sporadic. Dig Dis Sci 59:2757-64
Bose, Sandip K; Kim, Hangeun; Meyer, Keith et al. (2014) Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J Virol 88:4195-203
Barrett, Bradley S; Guo, Kejun; Harper, Michael S et al. (2014) Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo. Virology 468-470:601-8

Showing the most recent 10 out of 86 publications