The long-term objective of this project is to understand the molecular mechanisms responsible for altered glucose homeostasis during highly active antiretroviral therapy. The studies in this proposal are intended to identify the cellular targets of HIV protease inhibitors that lead to impaired beta-cell function and alterations in hepatic glucose production and to elucidate the molecular mechanism of this inhibition. We hypothesize that the peptide structure within all currently available HIV protease inhibitors is responsible for acute and reversible inhibition of the insulin-responsive glucose transporter GLUT4 and the liver/pancreas transporter GLUT2. To test this hypothesis, the acute effects of HIV protease inhibitors on the glucose-stimulated insulin secretory pathway in freshly isolated rodent and human islets as well as cultured MIN6 cells will be determined. Euglycemic hyperinsulinemic clamp experiments will also be performed in rats to determine the acute effects of HIV protease inhibitors on hepatic glucose production. The ability of the biguanide metformin to prevent protease inhibitor mediated inhibition of GLUT4 activity will be tested in Xenopus oocytes heterologously expressing this transporter isoform. Finally, the structural determinants involved in PI-induced GLUT4 inhibition will be determined by testing a family of synthetic aromatic peptides for their ability to inhibit 2-deoxyglucose uptake in GLUT4 expressing oocytes. Taken together, these studies will provide new insights into the molecular mechanism(s) leading to insulin resistance in patients treated with HIV protease inhibitors. This may facilitate the design of newer HIV protease inhibitors that maintain their clinical efficacy while avoiding their adverse effects on glucose homeostasis and will assist efforts to develop more effective treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK064572-02
Application #
6711723
Study Section
AIDS and Related Research 8 (AARR)
Program Officer
Teff, Karen L
Project Start
2003-04-01
Project End
2007-01-31
Budget Start
2004-02-01
Budget End
2005-01-31
Support Year
2
Fiscal Year
2004
Total Cost
$269,280
Indirect Cost
Name
Washington University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hresko, Richard C; Kraft, Thomas E; Tzekov, Anatoly et al. (2014) Isoform-selective inhibition of facilitative glucose transporters: elucidation of the molecular mechanism of HIV protease inhibitor binding. J Biol Chem 289:16100-13
Aerni-Flessner, Lauren; Abi-Jaoude, Melissa; Koenig, Amanda et al. (2012) GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol 11:63
Vyas, Arpita Kalla; Aerni-Flessner, Lauren B; Payne, Maria A et al. (2012) Saxagliptin Improves Glucose Tolerance but not Survival in a Murine Model of Dilated Cardiomyopathy. Cardiovasc Endocrinol 1:74-82
Hruz, Paul W (2011) Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab 25:459-68
Remedi, Maria Sara; Agapova, Sophia E; Vyas, Arpita K et al. (2011) Acute sulfonylurea therapy at disease onset can cause permanent remission of KATP-induced diabetes. Diabetes 60:2515-22
Hruz, Paul W; Yan, Qingyun; Tsai, Luong et al. (2011) GS-8374, a novel HIV protease inhibitor, does not alter glucose homeostasis in cultured adipocytes or in a healthy-rodent model system. Antimicrob Agents Chemother 55:1377-82
Vyas, Arpita Kalla; Yang, Kai-Chien; Woo, Dennis et al. (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 6:e17178
Hresko, Richard C; Hruz, Paul W (2011) HIV protease inhibitors act as competitive inhibitors of the cytoplasmic glucose binding site of GLUTs with differing affinities for GLUT1 and GLUT4. PLoS One 6:e25237
Vyas, Arpita Kalla; Koster, Joseph C; Tzekov, Anatoly et al. (2010) Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J Biol Chem 285:36395-400
Tu, Powen; Bhasin, Shalender; Hruz, Paul W et al. (2009) Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes 58:1739-48

Showing the most recent 10 out of 19 publications