the first evidence that diabetic conditions in vitro and in vivo lead to inflammatory gene transcription in monocytes via novel nuclear chromatin remodeling and potential epigenetic mechanisms involving co-operative effects between transcription factors, coactivators and chromatin histone acetylation. We evaluated monocytes cultured in vitro with diabetic stimuli such as high glucose (HG) and ligands of advanced glycation end products (AGEs), as well as monocytes from diabetic patients. We have made excellent progress and completed most of our original Specific Aims and also initiated several new studies. This rapidly moving and dynamic field has opened several new avenues that will be investigated in this renewal. We have uncovered exciting new mechanisms of inflammatory gene expression in monocytes under diabetic conditions including the involvement of novel chromatin factors, and key microRNAs (mIRs) whose targets modulate chromatin remodeling as well as mRNA stability. The current renewal will thus take our studies to a new pioneering level and advance the field by unraveling hitherto unexplored mechanisms of regulation of genes associated with monocyte dysfunction in vitro and in vivo in diabetes. The hypothesis is that diabetic conditions lead to increased expression of inflammatory genes in monocyte /macrophages via transcriptional mechanisms involving chromatin histone modifications and miRs, as well as post-transcriptional mechanisms involving mRNA stabilization. This will be evaluated by 4 Specific Aims based on published and extensive new preliminary data.
Aims 1 and 2 will determine how diabetic conditions in vitro in cultured monocytes and in vivo in monocytes from diabetic subjects lead to the transcription of inflammatory genes via novel changes in the chromatin at these gene promoters.
Aim 3 will test the functional roles of two key new micro-RNAs (miRs) that are differentially regulated in diabetic monocytes /macrophages.
Aim 4 will examine new post-transcriptional mechanisms by which diabetic stimuli increase the stability of key inflammatory gene mRNAs via novel interplay between RNA binding proteins and miRs. Our state-of-the-art and innovative assessments of the cross-talk between the transcriptome, epigenome, ribo-gnome and the inflammasome can provide new insights into cellular events mediating monocyte dysfunction under diabetic and insulin resistant conditions. These completed studies can greatly advance our knowledge of diabetic vascular disease and uncover new therapeutic targets for the debilitating vascular complications of diabetes, Project Description Page 6

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVS-D (02))
Program Officer
Jones, Teresa L Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
City of Hope/Beckman Research Institute
United States
Zip Code
Reddy, Marpadga A; Zhang, Erli; Natarajan, Rama (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58:443-55
Miao, Feng; Chen, Zhuo; Genuth, Saul et al. (2014) Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63:1748-62
Leung, Amy; Parks, Brian W; Du, Juan et al. (2014) Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem 289:23557-67
Leung, Amy; Natarajan, Rama (2014) Noncoding RNAs in vascular disease. Curr Opin Cardiol 29:199-206
Kato, Mitsuo; Castro, Nancy E; Natarajan, Rama (2013) MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 64:85-94
Leung, Amy; Natarajan, Rama (2013) Forgetting to switch off SMAD2 in aneurysmal disease. Circ Res 113:843-5
Leung, Amy; Trac, Candi; Jin, Wen et al. (2013) Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 113:266-78
Miao, Feng; Chen, Zhuo; Zhang, Lingxiao et al. (2013) RNA-sequencing analysis of high glucose-treated monocytes reveals novel transcriptome signatures and associated epigenetic profiles. Physiol Genomics 45:287-99
Reddy, Marpadga A; Tak Park, Jung; Natarajan, Rama (2013) Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol 33:341-53
Miao, Feng; Chen, Zhuo; Zhang, Lingxiao et al. (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287:16335-45

Showing the most recent 10 out of 32 publications