The liver has an enormous capacity to regenerate, as demonstrated by the 2/3 partial hepatectomy model in rodents. In addition, the liver has a stem cell compartment acting as a backup regenerative system. Activation of the stem cell compartment takes place when hepatocytes are functionally compromised, are unable to divide, or both. In stem cell-aided liver regeneration, progeny of the stem cells multiply in an amplification compartment composed of hepatic oval cells. Several studies have shown that bone marrow cells can differentiate into hepatocytes, and we have also shown that bone marrow (BM) cells are able to produce hepatic oval cells. The foremost questions are: what molecular mechanisms are involved in oval cell physiology, and can these pathways be manipulated to enhance their therapeutic value in treating liver disorders? The experiments described within this proposal are designed to address the above stated questions. We will pursue the following specific aims:
Specific Aim 1 : We hypothesize that activation of the JAK2 and MAPK signal transduction pathways by G-CSF interaction with G-CSF receptor on the cell membrane enhances both proliferation and migration of liver oval cells.
Specific aim 2 : We hypothesize that activation of the MEK and PI3K signal transduction pathways following SDF-1 binding to CXCR4 receptor on the cell membrane enhances both proliferation and migration of liver oval cells.
Specific aim 3 : We hypothesize that modulation of the oval cell phenotype by G-CSF and SDF-1 will positively affect engraftment and expansion of compensatory oval cells into mouse liver afflicted with a genetic disorder, resulting in a measurable enhancement of liver function. It is anticipated that the proposed studies will yield new and significant data about the mechanisms of governing the bone marrow contribution to liver regeneration and signals involved in oval cell activation, proliferation and differentiation.

Public Health Relevance

About 18,000 patients are currently scheduled for a liver transplant. With only 4,000- 5,000 organs becoming available each year, many will not survive the wait. Clearly, an alternative to whole organ transplant is needed. The studies proposed within this application are designed to identify mechanisms that drive stem cell repair of the damaged liver. We will utilize these mechanisms to facilitate the repopulation of diseased liver with stem cells that will generate healthy tissue. It is our hope that a similar therapy may someday be used as an alternative to liver transplant.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Doo, Edward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
Schools of Medicine
United States
Zip Code
Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon et al. (2016) miR-133b Regulation of Connective Tissue Growth Factor: A Novel Mechanism in Liver Pathology. Am J Pathol 186:1092-102
Pi, Liya; Jorgensen, Marda; Oh, Seh-Hoon et al. (2015) A disintegrin and metalloprotease with thrombospondin type I motif 7: a new protease for connective tissue growth factor in hepatic progenitor/oval cell niche. Am J Pathol 185:1552-63
Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas et al. (2015) Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells. World J Biol Chem 6:379-88
Pi, Liya; Robinson, Paulette M; Jorgensen, Marda et al. (2015) Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology 61:678-91
Mirmalek-Sani, Sayed-Hadi; Sullivan, David C; Zimmerman, Cynthia et al. (2013) Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 183:558-65
Pi, Liya; Shenoy, Anitha K; Liu, Jianwen et al. (2012) CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J 26:3365-79
Oh, Seh-Hoon; Darwiche, Houda; Cho, Jae-Hyoung et al. (2012) Characterization of a novel functional protein in the pancreatic islet: islet homeostasis protein regulation of glucagon synthesis in ýý cells. Pancreas 41:22-30
Jung, Youngmi; Oh, Seh-Hoon; Witek, Rafal P et al. (2012) Somatostatin stimulates the migration of hepatic oval cells in the injured rat liver. Liver Int 32:312-20
Darwiche, Houda; Oh, Seh-Hoon; Steiger-Luther, Nicole C et al. (2011) Inhibition of Notch signaling affects hepatic oval cell response in rat model of 2AAF-PH. Hepat Med 3:89-98
Shupe, Thomas; Petersen, Bryon E (2011) Potential applications for cell regulatory factors in liver progenitor cell therapy. Int J Biochem Cell Biol 43:214-21

Showing the most recent 10 out of 21 publications