Benign prostatic hyperplasia (BPH) is an important cause of orbidity in the adult male population and is the most common symptomatic tumor-like condition in humans. Clinically BPH results in urethral constriction with a consequent slowing of urinary flow rates and an inability to properly empty the urinary bladder. In the Western world BPH is not a life threatening condition. However, it is a condition with significant associated morbidity and consequent healthcare costs. BPH results in a variety of problems including nocturia, frequency, urgency and post-mictural dribbling and, more seriously it can cause renal insufficiency (with rising serum creatinine), frequent urinary tract infections and urosepsis due to insufficient urinary draining. For many decades the core of research into BPH has centered around androgen and estrogen signaling. These studies have given rise to the development of 51-reductase inhibitors such as finasteride and dutasteride. However these directions have not shown much recent progress in developing new approaches to improve the situation of patients. New concepts are sorely needed to move the field forwards. The central hypothesis of this proposal is that prostatic inflammation results in a profile of stromal changes which contribute to focal benign glandular expansion. The long term goal of this work is to identify pathways which can be co-targeted ether alone as a form of chemoprevention or along with current standard BPH therapies to provide safe and long term symptomatic relief. This proposal addresses a number of the high priority recommendations of the recently published NIDDK Prostate Research Strategic Plan including;the creation of new models;the development of an understanding of the signaling, interaction and crosstalk between multiple cell types in the prostate;and, the characterization of disease-relevant cellular pathways for potential therapeutic applications. The three specific aims in this proposal address interlocking aspects of BPH pathogenesis.
The first aim looks at the effects of inflammatory cytokine expression on prostatic epithelial and stromal differentiation.
The second aim examines the consequences of these changes in relation to the recruitment of bone marrow- derived cell populations and the contribution that these play in hyperplastic growth.
The third aim examines the targeting of nuclear factor-kappa B as a strategy to influence BPH pathogenesis.

Public Health Relevance

The root causes of benign prostatic hyperplasia (BPH) are unclear ut likely involve inflammation in the prostate. Current treatments aim to reduce androgenic stimulation and to relax prostatic smooth muscle. This project will investigate the potential of inflammatory responses to contribute to benign prostatic enlargement with a view to adding treatment options to either slow prostatic growth or relieve symptoms of BPH.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK067049-08
Application #
8477178
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Mullins, Christopher V
Project Start
2004-04-15
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
8
Fiscal Year
2013
Total Cost
$309,247
Indirect Cost
$111,012
Name
Vanderbilt University Medical Center
Department
Surgery
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
DeGraff, David J; Grabowska, Magdalena M; Case, Tom C et al. (2014) FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Lab Invest 94:726-39
Lin-Tsai, Opal; Clark, Peter E; Miller, Nicole L et al. (2014) Surgical intervention for symptomatic benign prostatic hyperplasia is correlated with expression of the AP-1 transcription factor network. Prostate 74:669-79
Yu, X; Cates, J M; Morrissey, C et al. (2014) SOX2 expression in the developing, adult, as well as, diseased prostate. Prostate Cancer Prostatic Dis 17:301-9
Strand, Douglas W; DeGraff, David J; Jiang, Ming et al. (2013) Deficiency in metabolic regulators PPAR? and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration. Am J Pathol 182:449-59
Moad, Mohammad; Pal, Deepali; Hepburn, Anastasia C et al. (2013) A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells. Eur Urol 64:753-61
Jiang, Ming; Strand, Douglas W; Franco, Omar E et al. (2011) PPAR?: a molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation 82:220-36
Tanaka, Stacy T; Ishii, Kenichiro; Demarco, Romano T et al. (2010) Endodermal origin of bladder trigone inferred from mesenchymal-epithelial interaction. J Urol 183:386-91
Jiang, M; Fernandez, S; Jerome, W G et al. (2010) Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ 17:469-81
Jiang, Ming; Jerome, W Gray; Hayward, Simon W (2010) Autophagy in nuclear receptor PPARgamma-deficient mouse prostatic carcinogenesis. Autophagy 6:175-6
Strand, Douglas W; Hayward, Simon W (2010) Modeling stromal-epithelial interactions in disease progression. Discov Med 9:504-11

Showing the most recent 10 out of 13 publications