Understanding and manipulating hematopoietic differentiation requires knowing the regulatory circuitry that orchestrates the programs of gene expression during this process. One class of gene regulatory molecules are the microRNAs (miRNAs) - tiny endogenous RNAs, about 22 nucleotides in length, that are thought to use the elements of the RNA-interference pathway to post transcriptionally down-regulate the expression of protein-coding genes. Starting with the hypothesis that miRNAs are playing important regulatory roles during hematopoietic differentiation, the Lodish and Bartel labs have collaborated to clone about 100 different miRNAs from mouse bone marrow. These include five miRNAs referred to as """"""""hematopoietic miRNAs"""""""", because they are highly or preferentially expressed in hematopoietic cell lineages. Three of the five also derive from loci associated with chromosomal breakpoints or aberrations previously linked to leukemias. Preliminary studies show that ectopic expression of one of these miRNAs in bone marrow progenitors modulates hematopoietic differentiation both in cell culture and in transplanted mice. The experiments of this proposal focus on the hematopoietic miRNAs with the broad, long-term objective of understanding the gene regulatory events needed for hematopoietic stem cell and progenitor maintenance and differentiation.
The specific aims are: 1) To examine the consequences of altered miRNA expression during hematopoiesis. 2) To identify the regulatory targets of hematopoietic miRNAs and examine the consequences of disrupting miRNA regulation of these targets. 3) To identify additional hematopoietic miRNAs. These experiments include the ectopic expression of hematopoietic miRNAs in hematopoietic stem cells and lineage-committed progenitors, knock-outs of miRNA genes, in vitro validation of predicted miRNA regulatory targets, in vivo substitution of target genes with versions unresponsive to miRNA regulation, cloning of additional miRNAs from hematopoietic tissues, and further expression analyses. They seek to place miRNAs within specific gene regulatory pathways needed for hematopoietic stem cell maintenance and lymphoid and myeloid differentiation. They will also address more fundamental issues regarding miRNA regulation, such as the combinatorial control of expression by miRNAs and the features of functional miRNA complementary sites within vertebrate mRNAs. Thus, these experiments will provide important insights for understanding the action of miRNAs in mammals and how their dysfunction might contribute to both hematological and other human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK068348-04
Application #
7258974
Study Section
Hematopoiesis Study Section (HP)
Program Officer
Wright, Daniel G
Project Start
2004-07-01
Project End
2009-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
4
Fiscal Year
2007
Total Cost
$803,704
Indirect Cost
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
120989983
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Alvarez-Dominguez, Juan R; Knoll, Marko; Gromatzky, Austin A et al. (2017) The Super-Enhancer-Derived alncRNA-EC7/Bloodlinc Potentiates Red Blood Cell Development in trans. Cell Rep 19:2503-2514
Alvarez-Dominguez, Juan R; Lodish, Harvey F (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130:1965-1975
Alvarez-Dominguez, Juan R; Zhang, Xu; Hu, Wenqian (2017) Widespread and dynamic translational control of red blood cell development. Blood 129:619-629
Li, Hojun; Shi, Jiahai; Huang, Nai-Jia et al. (2016) Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells. Haematologica 101:e216-9
Atianand, Maninjay K; Hu, Wenqian; Satpathy, Ansuman T et al. (2016) A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell 165:1672-1685
Alvarez-Dominguez, Juan R; Bai, Zhiqiang; Xu, Dan et al. (2015) De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. Cell Metab 21:764-776
Ludwig, Leif S; Cho, Hyunjii; Wakabayashi, Aoi et al. (2015) Genome-wide association study follow-up identifies cyclin A2 as a regulator of the transition through cytokinesis during terminal erythropoiesis. Am J Hematol 90:386-91
Knoll, Marko; Lodish, Harvey F; Sun, Lei (2015) Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol 11:151-60
Hu, Wenqian; Yuan, Bingbing; Lodish, Harvey F (2014) Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation. Dev Cell 30:660-72
Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan et al. (2014) MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 63:4045-56

Showing the most recent 10 out of 48 publications