Runx2 is a master osteoblast transcription factor playing pivotal roles in skeletal development and homeostasis. In humans, Runx2 haplotypes contribute to variations in bone mass. Runx1, which is expressed in osteoblasts and shares similar DNA-binding properties with Runx2, has been implicated in bone metabolism as well. Sex steroid hormones and their receptors (SHRs) also play critical roles in bone health and disease, and are targets for drugs that affect bone mass and fragility either positively or negatively. The proskeletal effects of sex steroids are mediated by anabolic effects in osteoblasts, but more importantly by attenuating bone resorption. The anti-resorptive effects of sex steroids are attributable to both increasing osteoclast apoptosis and indirect inhibition of bone turnover via poorly understood mechanisms in osteoblasts and other mesenchymal cells. We found that the activated estrogen receptor a (ERa) and the androgen receptor (AR) each inhibits Runx2, and that AR, but not ERa, inhibits Runx1. These inhibitory activities are important in light of recent data from transgenic mice whose osteoblasts over-express either Runx2 or a dominant negative form of Runx2. Both mouse models indicate that restraining the activity of Runx2 helps keep bone turnover in check and prevent osteoporosis. We therefore propose to investigate in depth the physical interactions between Runx proteins and SHRs, the mechanisms mediating the resulting inhibition of Runx2 and/or Runx1, and the physiological implications. This will be done by analyses of recombinant and transiently expressed proteins, as well as the endogenous SHR and Runx proteins in osteoblasts, including their associations with each other, with co-regulators, and with genomic Runx targets.
Specific Aim 1 is to dissect the functional and molecular interactions between ERa and Runx2.
Specific Aim 2 is to dissect the functional and molecular interactions between AR and Runx2, as well as between AR and Runx1. Based on our preliminary data, we hypothesize the existence of both similar and unique features for each of these interactions.
Specific Aim 3 is to establish in vivo the requirement for osteoblastic ERa signaling, and the timing during osteoblast differentiation, in which it confers protection on bone, and to test and characterize the anti-Runx2 anti-osteoclastogenic properties of osteoblastic SHR signaling in a co-culture setting. Incorporated into Aims 1-3 are experiments addressing novel mechanisms of action of selective estrogen receptor modulators (SERMs). Like estradiol, SERMs promote a physical interaction between ERa and Runx2. However, SERMs elicit different functional outcomes, possibly explaining the variable skeletal effects of these drugs. Our studies will provide novel insights into the regulation of skeletal metabolism by sex hormones, and will reveal commonalities and differences between the genders at the molecular level. They will decipher cryptic mechanisms of action of existing SERMs, and support the rationale development of novel ones, based on their influence on Runx proteins.

Public Health Relevance

This project will unravel fundamental mechanisms of osteoporosis that occurs as sex hormones decline. It is based on the observation that Runx proteins, which control bone metabolism, interact with receptors for both estrogens and androgens. The proposed work can ultimately lead to the development of improved drugs to treat postmenopausal osteoporosis.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Malozowski, Saul N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Schools of Medicine
Los Angeles
United States
Zip Code
Adisetiyo, Helty; Liang, Mengmeng; Liao, Chun-Peng et al. (2014) Dependence of castration-resistant prostate cancer (CRPC) stem cells on CRPC-associated fibroblasts. J Cell Physiol 229:1170-6
Koromila, Theodora; Baniwal, Sanjeev K; Song, Yae S et al. (2014) Glucocorticoids antagonize RUNX2 during osteoblast differentiation in cultures of ST2 pluripotent mesenchymal cells. J Cell Biochem 115:27-33
Little, Gillian H; Baniwal, Sanjeev K; Adisetiyo, Helty et al. (2014) Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res 74:2857-68
Chimge, N-O; Frenkel, B (2013) The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 32:2121-30
Börjesson, Anna E; Farman, Helen H; Engdahl, Cecilia et al. (2013) The role of activation functions 1 and 2 of estrogen receptor-? for the effects of estradiol and selective estrogen receptor modulators in male mice. J Bone Miner Res 28:1117-26
Baniwal, Sanjeev K; Little, Gillian H; Chimge, Nyam-Osor et al. (2012) Runx2 controls a feed-forward loop between androgen and prolactin-induced protein (PIP) in stimulating T47D cell proliferation. J Cell Physiol 227:2276-82
Yen, Hai-Yun; Gabet, Yankel; Liu, Ying et al. (2012) Alterations in Brca1 expression in mouse ovarian granulosa cells have short-term and long-term consequences on estrogen-responsive organs. Lab Invest 92:802-11
Chimge, Nyam-Osor; Baniwal, Sanjeev K; Luo, Jingqin et al. (2012) Opposing effects of Runx2 and estradiol on breast cancer cell proliferation: in vitro identification of reciprocally regulated gene signature related to clinical letrozole responsiveness. Clin Cancer Res 18:901-11
Borjesson, A E; Windahl, S H; Lagerquist, M K et al. (2011) Roles of transactivating functions 1 and 2 of estrogen receptor-alpha in bone. Proc Natl Acad Sci U S A 108:6288-93
Jariwala, Unnati; Cogan, Jon P; Jia, Li et al. (2009) Inhibition of AR-mediated transcription by binding of Oct1 to a motif enriched in AR-occupied regions. Prostate 69:392-400

Showing the most recent 10 out of 27 publications