Abnormal liver carbohydrate and fat metabolism contribute to poor glucose and lipid homeostasis in a variety of metabolic diseases. For this reason, factors that regulate these metabolic pathways in the liver have been intensely studied, yet remain incompletely understood. Commonly, the expression of gluconeogenic enzymes, in particular phosphoenolpyruvate carboxykinase (PEPCK), are thought to control the rate of gluconeogenesis;however, how flux through these pathways change in response to enzyme expression (i.e. control strength) remains poorly understood. Our work demonstrates that in mice with graded levels of PEPCK expression, PEPCK control strength is weak, implying that other factors coordinate control of gluconeogenesis. One of these factors is the rate of hepatic energy production via fat oxidation. For instance, exposure of liver to high levels of fatty acids results in increased gluconeogenesis, and more recently, molecular factors have been identified that coordinate the enzymes of gluconeogenesis and fat oxidation in parallel. We've found that the rate of hepatic TCA cycle flux, a pathway intimately linked to hepatic energy production, correlates more strongly with flux through PEPCK than PEPCK enzyme expression itself. To continue our studies of these pathways we will measure metabolic fluxes in liver in response to altered expression of the gluconeogenic enzymes pyruvate carboxylase (PC) and PEPCK to determine their capacity to influence the rate of gluconeogenesis. Finally, since elevated fat delivery to liver is known to increase gluconeogenesis, and presumably flux through PC and PEPCK, we will also measure hepatic fluxes in response to altered fat availability. These studies will be performed using a multidisciplinary approach comprised of gene altered models, isolated organ preparations and rodent micro-surgery. Nuclear magnetic resonance (NMR) isotopomer analysis will be used to measure metabolic fluxes and these techniques will be corroborated by simultaneous hepatic mass balance determinations. Aberrant fluxes through metabolic pathways of the liver participate in the morbidity of numerous metabolic diseases. Work funded by this grant will substantially enhance our understanding of how metabolic pathways in the liver, specifically gluconeogenesis and fat oxidation, respond to changes in enzyme or substrate concentration. Ultimately, this knowledge is critical for development and interpretation of molecular or pharmacological interventions that modulate these pathways, either by design or happenstance.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Laughlin, Maren R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Silvers, Molly A; Deja, Stanislaw; Singh, Naveen et al. (2017) The NQO1 bioactivatable drug, ?-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem 292:18203-18216
Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D et al. (2017) The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab 6:1468-1479
Kucejova, Blanka; Duarte, Joao; Satapati, Santhosh et al. (2016) Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Rep 16:508-519
Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A G et al. (2016) Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 126:1605
Morris, E Matthew; Meers, Grace M E; Koch, Lauren G et al. (2016) Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab 311:E749-E760
Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J et al. (2015) Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metab 22:669-81
Moreno, Karlos X; Moore, Christopher L; Burgess, Shawn C et al. (2015) Production of hyperpolarized (13)CO2 from [1-(13)C]pyruvate in perfused liver does reflect total anaplerosis but is not a reliable biomarker of glucose production. Metabolomics 11:1144-1156
McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong et al. (2015) Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell Metab 22:682-94
Buescher, Joerg M; Antoniewicz, Maciek R; Boros, Laszlo G et al. (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189-201
Burgess, Shawn C; Merritt, Mathew E; Jones, John G et al. (2015) Limitations of detection of anaplerosis and pyruvate cycling from metabolism of [1-(13)C] acetate. Nat Med 21:108-9

Showing the most recent 10 out of 37 publications