Autosomal dominant polycystic kidney disease (ADPKD) is a hyperplastic disorder in which aberrant growth of tubule epithelial cells causes the formation of numerous fluid-filled cysts, massively enlarged kidneys and progressive loss of renal function. Although cysts are benign neoplasms, they ultimately cause renal insufficiency through extensive nephron loss and replacement of adjacent parenchyma with fibrosis. The mechanisms by which cysts destroy the kidneys are poorly understood;however changes in the deposition of the extracellular matrix (ECM) are likely to be important. In a microarray analysis of cultured human ADPKD cyst epithelial cells, periostin mRNA was over expressed 15-fold compared to normal human kidney (NHK) cells. Periostin, initially identified in osteoblasts as a soluble ECM molecule, is not expressed in normal adult kidneys but is expressed transiently during renal development within the nephrogenic zone, a site of nephron formation and vascularization. In ADPKD, periostin was expressed in cyst-lining cells in situ, in extracellular matrix adjacent to the cysts and within cyst fluid. Expression of aV-integrin, a receptor for periostin, was 9-fold higher in ADPKD cells compared to NHK cells, and antibodies that block aV-integrin inhibited periostin-induced cell proliferation. By contrast, periostin did not affect the proliferation of normal kidney cells. We found that periostin activates integrin-linked kinase (ILK), a kinase that regulates cell proliferation and survival through activation of Akt, GSK-32/2-catenin and mTOR signaling pathways. In preliminary data, we found that periostin expression was elevated in the kidneys of pcy/pcy and Pkd2WS25/- mice, models of human PKD;and that genetic knockout of periostin (PN-/-) reduced kidney weight (as a % of body weight) in the pcy/pcy mouse. We also found that periostin levels were elevated sera of non-azotemic ADPKD patients (n = 14) compared to normal volunteers (n = 8), suggesting that periostin may be an early indicator of PKD progression. Our general hypothesis is that periostin is a novel autocrine mitogen with the potential to accelerate cyst growth and promote interstitial remodeling in ADPKD.

Public Health Relevance

ADPKD is the most frequently inherited kidney disorder with a gene frequency of 1 in 500 to 1,000 births and accounts for approximately 5-9% of all end-stage renal diseases. Costs for renal transplantation, dialysis and related treatments for PKD approach $2 billion/yr in the US alone and it is estimated that by the end of this decade treatments will cost $90 billion/yr worldwide. Completion of the proposed studies will provide new information on the role of periostin, a novel autocrine mitogen secreted by mural epithelial cells with the potential to accelerate cyst growth and promote interstitial remodeling in ADPKD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK081579-05
Application #
8529505
Study Section
Special Emphasis Panel (ZRG1-DKUS-K (02))
Program Officer
Rasooly, Rebekah S
Project Start
2009-08-21
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$319,758
Indirect Cost
$106,586
Name
University of Kansas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Das, Bhaskar C; Thapa, Pritam; Karki, Radha et al. (2014) Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 22:673-83
Wallace, Darren P; White, Corey; Savinkova, Lyudmyla et al. (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845-54
Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter et al. (2014) Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Renal Physiol 306:F640-54
Galarreta, Carolina I; Grantham, Jared J; Forbes, Michael S et al. (2014) Tubular obstruction leads to progressive proximal tubular injury and atubular glomeruli in polycystic kidney disease. Am J Pathol 184:1957-66
Blanco, Gustavo; Wallace, Darren P (2013) Novel role of ouabain as a cystogenic factor in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 305:F797-812
Wallace, Darren P (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812:1291-300
Reif, Gail A; Yamaguchi, Tamio; Nivens, Emily et al. (2011) Tolvaptan inhibits ERK-dependent cell proliferation, Clýýý secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol 301:F1005-13
Nguyen, Anh-Nguyet T; Jansson, Kyle; Sanchez, Gladis et al. (2011) Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation. Am J Physiol Renal Physiol 301:F897-906
Yamaguchi, Tamio; Reif, Gail A; Calvet, James P et al. (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299:F944-51