This application is in response to NIH notice NOT-OD-09-058, entitled """"""""NIH Announces the Availability of Recovery Act Funds for Competitive Revision Applications"""""""". This competitive revision grant proposes to identify novel peptide inhibitors for the digestive enzyme chymotrypsin C. The parent grant investigates how chymotrypsin C regulates activation and degradation of other digestive enzymes and how mutations in chymotrypsin C increase the risk of chronic pancreatitis in humans. The availability of a highly specific chymotrypsin C inhibitor would facilitate the accomplishment of the specific aims outlined in the parent grant and enhance the overall tempo of the research program. We propose to use phage display technology to select candidate inhibitors;to characterize these inhibitors using both synthetic and natural chymotrypsin C substrates and to determine the structural basis of specific inhibition by co-crystallizing inhibitors with chymotrypsin C.

Public Health Relevance

The present grant proposal intends to develop novel inhibitors against human chymotrypsin C, a digestive enzyme, which plays an important role in regulating other digestive enzymes and has been linked to the development of chronic pancreatitis, an often debilitating disease. The results can advance the development of novel diagnostic and therapeutic interventions for human pancreatitis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK082412-01A1S2
Application #
7809165
Study Section
Special Emphasis Panel (ZRG1-DKUS-D (95))
Program Officer
Serrano, Jose
Project Start
2009-09-30
Project End
2012-08-31
Budget Start
2009-09-30
Budget End
2012-08-31
Support Year
1
Fiscal Year
2009
Total Cost
$566,265
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Dentistry
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Hegyi, Eszter; Sahin-Tóth, Miklós (2018) Trypsinogen isoforms in the ferret pancreas. Sci Rep 8:15094
Jancsó, Zsanett; Hegyi, Eszter; Sahin-Tóth, Miklós (2018) Chymotrypsin Reduces the Severity of Secretagogue-Induced Pancreatitis in Mice. Gastroenterology 155:1017-1021
Hegyi, Eszter; Sahin-Tóth, Miklós (2017) Genetic Risk in Chronic Pancreatitis: The Trypsin-Dependent Pathway. Dig Dis Sci 62:1692-1701
Wu, Hao; Zhou, Dai-Zhan; Berki, Dorottya et al. (2017) No significant enrichment of rare functionally defective CPA1 variants in a large Chinese idiopathic chronic pancreatitis cohort. Hum Mutat 38:959-963
Boros, Eszter; Szabó, András; Zboray, Katalin et al. (2017) Overlapping Specificity of Duplicated Human Pancreatic Elastase 3 Isoforms and Archetypal Porcine Elastase 1 Provides Clues to Evolution of Digestive Enzymes. J Biol Chem 292:2690-2702
Balázs, Anita; Hegyi, Péter; Sahin-Tóth, Miklós (2016) Pathogenic cellular role of the p.L104P human cationic trypsinogen variant in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 310:G477-86
Jancsó, Zsanett; Sahin-Tóth, Miklós (2016) Tighter Control by Chymotrypsin C (CTRC) Explains Lack of Association between Human Anionic Trypsinogen and Hereditary Pancreatitis. J Biol Chem 291:12897-905
Balázs, Anita; Németh, Balázs Csaba; Ördög, Balázs et al. (2016) A Common CCK-B Receptor Intronic Variant in Pancreatic Adenocarcinoma in a Hungarian Cohort. Pancreas 45:541-5
Párniczky, Andrea; Hegyi, Eszter; Tóth, Anna Zsófia et al. (2016) Genetic Analysis of Human Chymotrypsin-Like Elastases 3A and 3B (CELA3A and CELA3B) to Assess the Role of Complex Formation between Proelastases and Procarboxypeptidases in Chronic Pancreatitis. Int J Mol Sci 17:2148
Szabó, András; Pilsak, Claudia; Bence, Melinda et al. (2016) Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2. J Biol Chem 291:17706-16

Showing the most recent 10 out of 33 publications