Alterations in the contractile state of smooth muscle (SM) plays a key role in gastrointestinal diseases such as gastric, intestinal and sphincter dysfunction, abnormal motility and other pathologies. SM is critically modulated by a complex network of signaling pathways that regulate contractility through phosphorylation of myosin. Myosin light chain phosphatase (MLCP) is a major downstream target of these signaling pathways yet the molecular mechanisms responsible for its inhibition and activation are poorly understood and this is the focus of our proposal. The effector of RhoA GTPase, Rho-kinase (ROCK) and other kinases, phosphorylate MLCP targeting subunit (MYPT1), at Thr696 and Thr853 and inhibit MLCP, while cAMP/cGMP signals and the cyclic nucleotide target, telokin, reverse the inhibitory effect, causing GI SM relaxation. Our collaboration has lead to a novel model for the mechanism underlying the inhibition of MLCP activity upon MYPT1 phosphorylation. In the model, the segment including the phosphorylated MYPT1 at Thr696 or Thr853 directly binds to the active site of MLCP, resulting in an autoinhibition of MLCP.
In Aim 1 we will determine the structure / function relationship of MYPT1 autoinhibitory (AI) domains including Thr696 (AI-1) or Thr853 (AI-2) in the regulation of gut SM tone to now rigorously test this model. The model will be validated in live fundus SM cells using FRET biosensors.
The second aim will address how cAMP/cGMP signals alter MLCP activity to eliminate RhoA-mediated Ca2+ sensitization resulting in relaxation. Cyclic nucleotides are well established as physiologically important mediators of relaxation in GI SM. A major cyclic nucleotide target shown to activate MLCP is telokin, which is most highly expressed in GI SM. The pCa-force relationship is left shifted in telokin knockout mice compared to wild type.
In Aim 2 a we will determine the molecular mechanism(s) of telokin- induced activation of MLCP activity. Surface plasmon resonance, isothermal calorimetry, GST-pull down, proximity ligation assays (PLA) and a FRET biosensor will be used to test two molecular models of telokin- induced activation of MLCP. Functional assays will utilize GI SM from telokin -/- and WT mice.
In Aim 2 b we will test the hypothesis that cyclic nucleotide-induced de-autoinhibition of MLCP in different gastrointestinal smooth muscles is mediated by multiple, but dominated by different pathways to relax Ca2+ sensitized force. We will determine using photolysis of caged nucleotides, whether non-telokin mediated attenuation of the autoinhibition by cyclic nucleotides occurs through down regulation of RhoA activity by Epac activation of Rap1, through phosphorylation of Ser695 of MYPT1 or inhibitory phosphorylation of RhoA. Using our in vivo and in vitro data for simulations and fitting we expect to establish the magnitudes and hierarchy of the contribution of these signaling pathways and arrive at new mechanistic computational models of cyclic nucleotide-induced relaxation in GI SM. We expect that fundus and ileum SM will be dominated by different pathways, reflecting their different functional roles. Findings should lead to new insights for targeting therapies.

Public Health Relevance

Diseases such as g by abnormal contraction and relaxation of smooth muscle tissues gastric, intestinal and sphincter dysfunction, dyspepsia, intestinal bowel disease, surgery- induced decreased gut motility, hypertension, cerebral and coronary vasospasm, erectile dysfunction, and bronchial asthma, among other diseases are caused by abnormal contraction and relaxation of smooth muscle tissues. We are studying the role of specific proteins, which through complex signaling pathways regulate the contractile machinery in gastrointestinal smooth muscle cells. This contractile machinery also functions in cell migration, such as occurs during development of the gastrointestinal tract and in tumor metastasis. The results of the research should translate into novel treatments for targeting these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK088905-03
Application #
8296320
Study Section
Clinical, Integrative and Molecular Gastroenterology Study Section (CIMG)
Program Officer
Carrington, Jill L
Project Start
2010-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$384,824
Indirect Cost
$82,764
Name
University of Virginia
Department
Physiology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Khasnis, Mukta; Nakatomi, Akiko; Gumpper, Kristyn et al. (2014) Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 53:2701-9
Lakshmikanthan, Sribalaji; Zieba, Bartosz J; Ge, Zhi-Dong et al. (2014) Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure. Arterioscler Thromb Vasc Biol 34:1486-94
Eto, Masumi; Kirkbride, Jason A; Chugh, Rishika et al. (2013) Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells. Biochem Biophys Res Commun 434:137-42
Artamonov, Mykhaylo; Momotani, Ko; Utepbergenov, Darkhan et al. (2013) The p90 ribosomal S6 kinase (RSK) is a mediator of smooth muscle contractility. PLoS One 8:e58703
Kim, Jee In; Urban, Mark; Young, Garbo D et al. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am J Physiol Cell Physiol 303:C58-68
Khromov, Alexander S; Momotani, Ko; Jin, Li et al. (2012) Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle. J Biol Chem 287:20975-85
Zieba, Bartosz J; Artamonov, Mykhaylo V; Jin, Li et al. (2011) The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 286:16681-92
Momotani, Ko; Artamonov, Mykhaylo V; Utepbergenov, Darkhan et al. (2011) p63RhoGEF couples Gýý(q/11)-mediated signaling to Ca2+ sensitization of vascular smooth muscle contractility. Circ Res 109:993-1002