Painful bladder syndrome/interstitial cystitis (PBS/IC) is a disease with unknown etiology, which presents clinically as urinary urgency, frequency, and bladder associated pain. PBS/IC has a devastating psychological and social impact on quality of life, and currently has no effective treatment. The clinical challenge for diagnosis and treatment of PBS/IC is certainly a reflection of the lack of basic scientific knowledge about bladder nociception, i.e., its peripheral origination, transmission, and central nervous system mechanisms. Although basic scientific studies have revealed the important role of the parasympathetic (pelvic nerve) C-fiber afferent pathway in bladder nociception, little is known about the role of the sympathetic (hypogastric nerve) afferent pathway that also innervates the bladder and generates afferent firing during bladder distension/irritation. However, clinical reports showed that blockade of the sympathetic afferent pathway could significantly relieve visceral pelvic pain including PBS/IC symptoms. Furthermore, bladder sensation/pain could still be elicited in human subjects with destroyed sacral spinal cord or transected sacral spinal roots, indicating an important role of sympathetic afferent pathways. In this grant application we will focus our studies on the sympathetic afferent pathway to close the gap between clinical evidence and basic scientific knowledge about bladder nociception. Our studies will determine the function of the sympathetic afferent pathway in bladder control and nociception, determine the properties of chemo-sensitive sympathetic nociceptive bladder afferent fibers, and define the brain projections of these afferents. A new nociceptive bladder reflex from hypogastric afferent nerves to pelvic efferent nerves will be analyzed for the first time. These studies will open a new field of research and dramatically change our current understanding of bladder overactivity, frequency, urgency, incontinence, and more importantly bladder nociception. Determining the role of the sympathetic afferent pathway in bladder nociception will promote the development of new diagnostic methods and effective treatments targeting the neurotransmitters/receptors in this pathway. The success of our proposed studies will significantly benefit millions of Americans suffering from PBS/IC.

Public Health Relevance

Painful bladder syndrome/interstitial cystitis (PBS/IC), which has a devastating psychological and social impact on quality of life, has an unknown etiology and ineffective treatments. Our project which will reveal the neurophysiological mechanisms and neuroanatomy underlying bladder nociception could promote the development of new diagnosis methods and effective treatments and significantly benefit millions of Americans suffering from PBS/IC.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK091253-04
Application #
8721401
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Mullins, Christopher V
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$329,513
Indirect Cost
$112,013
Name
University of Pittsburgh
Department
Pharmacology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Matsuta, Yosuke; Roppolo, James R; de Groat, William C et al. (2014) Poststimulation inhibition of the micturition reflex induced by tibial nerve stimulation in rats. Physiol Rep 2:e00205
Xiao, Zhiying; Reese, Jeremy; Schwen, Zeyad et al. (2014) Role of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am J Physiol Renal Physiol 306:F781-9
Reese, Jeremy; Xiao, Zhiying; Schwen, Zeyad et al. (2014) Effects of duloxetine and WAY100635 on pudendal inhibition of bladder overactivity in cats. J Pharmacol Exp Ther 349:402-7
Zhang, Xiulin; Koronowski, Kevin B; Li, Lu et al. (2014) Nitro-oleic acid desensitizes TRPA1 and TRPV1 agonist responses in adult rat DRG neurons. Exp Neurol 251:12-21
Xiao, Zhiying; Rogers, Marc J; Shen, Bing et al. (2014) Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats. Am J Physiol Renal Physiol 307:F673-9
Zhang, Xiulin; Beckel, Jonathan M; Daugherty, Stephanie L et al. (2014) Activation of TRPC channels contributes to OA-NO2-induced responses in guinea-pig dorsal root ganglion neurons. J Physiol 592:4297-312
Fitzgerald, Jocelyn J; Ustinova, Elena; Koronowski, Kevin B et al. (2013) Evidence for the role of mast cells in colon-bladder cross organ sensitization. Auton Neurosci 173:6-13
Mally, Abhijith D; Matsuta, Yosuke; Zhang, Fan et al. (2013) Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J Urol 189:1574-9
de Groat, W C; Wickens, C (2013) Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol (Oxf) 207:66-84
Matsuta, Yosuke; Schwen, Zeyad; Mally, Abhijith D et al. (2013) Effect of methysergide on pudendal inhibition of micturition reflex in cats. Exp Neurol 247:250-8

Showing the most recent 10 out of 15 publications