Metabolic regulation of adipocyte-macrophage crosstalk in obesity Summary Obesity-associated adipose tissue inflammation critically contributes to the development of insulin resistance and type 2 diabetes. While much evidence demonstrates the importance of both adipocytes and macrophages in initiating adipose tissue inflammation, little is known about precisely how nutrient metabolism is linked to inflammatory responses in both adipocytes and macrophages. It is also unknown about the mechanisms underlying metabolic regulation of the crosstalk between adipocytes and macrophages. The long-term goal of this research is to dissect adipocyte-macrophage crosstalk so that novel evidence-based approaches can be developed for preventing and/or treating insulin resistance. As an adipose tissue-abundant gene, PFKFB3 encodes for a regulatory enzyme whose product stimulates glycolysis. For this project, the central hypothesis is that PFKFB3 orchestrates appropriate metabolic regulation of adipocyte-macrophage crosstalk to suppress macrophage proinflammatory (M1) activation, stimulate macrophage alternative (M2) activation, and improve adipocyte functions, thereby protecting against obesity-associated adipose tissue inflammation and systemic insulin resistance. This hypothesis is based on the following novel findings: 1) PFKFB3 stimulates adipocyte production of palmitoleate (a mono-unsaturated fatty acid), which in turn blunts macrophage M1 activation;2) PFKFB3 is involved in PPARgamma stimulation of macrophage M2 activation;and 3) Myeloid cell-specific PFKFB3 disruption exacerbates diet-induced adipose tissue dysfunctions. Thus, the goal of this project is to define the novel role of PFKFB3 in regulating adipocyte-macrophage crosstalk. Accordingly, mice with selective PFKFB3 disruption in adipocytes and/or myeloid cells are generated.
For Specific Aim 1, experiments have been designed to test the hypothesis that adipocyte factors generated in response to PFKFB3 action, in particular palmitoleate, suppress macrophage M1 activation and/or stimulate macrophage M2 activation. Moreover, the in vivo effects of adipocyte PFKFB3 disruption on adipose tissue macrophage polarization, adipose tissue inflammation, and systemic insulin sensitivity will be examined.
For Specific Aim 2, experiments have been designed to test the hypothesis that PFKFB3 links nutrient metabolism and macrophage polarization. Also, the in vivo effects of PFKFB3 disruption in myeloid cells on adipose tissue inflammation and systemic insulin sensitivity will be examined.
For Specific Aim 3, experiments have been designed to test the hypothesis that the PFKFB3 in adipocytes and/or macrophages is needed for actions of PPARgamma activation. Accordingly, the involvement of the PFKFB3 in adipocytes versus macrophages in PPARgamma regulation of adipocyte-macrophage crosstalk, adipose tissue inflammation, and systemic insulin sensitivity will be examined. Together, the proposed research will illustrate a new paradigm on metabolic regulation of adipocyte-macrophage crosstalk, and provide the experimental basis for insulin sensitization by means of selective PFKFB3 activation.

Public Health Relevance

Results from the proposed research will significantly advance the knowledge of metabolic regulation of adipocyte-macrophage crosstalk in relation to systemic insulin sensitivity. Furthermore, the successful completion of this project will support the development of novel PFKFB3-based approaches, in addition to thiazolidinediones (PPARgamma agonists) as insulin-sensitizers, for preventing and/or treating insulin resistance and related diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK095828-02
Application #
8658425
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Abraham, Kristin M
Project Start
2013-05-05
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Texas A&M Agrilife Research
Department
Nutrition
Type
Earth Sciences/Resources
DUNS #
City
College Station
State
TX
Country
United States
Zip Code
77843
Guo, Xin; Shu, Chang; Li, Honggui et al. (2017) Cyclic GMP-AMP Ameliorates Diet-induced Metabolic Dysregulation and Regulates Proinflammatory Responses Distinctly from STING Activation. Sci Rep 7:6355
Qi, Ting; Chen, Yanming; Li, Honggui et al. (2017) A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. J Mol Endocrinol 59:49-59
Botchlett, Rachel; Woo, Shih-Lung; Liu, Mengyang et al. (2017) Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 233:R145-R171
Chen, Lili; Zhao, Jiajia; Tang, Qingming et al. (2016) PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs. Sci Rep 6:24324
Liu, Lulu; Li, Qifu; Xiao, Xiaoqiu et al. (2016) miR-1934, downregulated in obesity, protects against low-grade inflammation in adipocytes. Mol Cell Endocrinol 428:109-17
Botchlett, Rachel; Li, Honggui; Guo, Xin et al. (2016) Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells. Sci Rep 6:28963
Guo, Ting; Woo, Shih-Lung; Guo, Xin et al. (2016) Berberine Ameliorates Hepatic Steatosis and Suppresses Liver and Adipose Tissue Inflammation in Mice with Diet-induced Obesity. Sci Rep 6:22612
Zheng, Juan; Woo, Shih-Lung; Hu, Xiang et al. (2015) Metformin and metabolic diseases: a focus on hepatic aspects. Front Med 9:173-86
Mashek, Douglas G; Wu, Chaodong (2015) MUFAs. Adv Nutr 6:276-7
Woo, Shih-Lung; Xu, Hang; Li, Honggui et al. (2014) Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS One 9:e91111

Showing the most recent 10 out of 15 publications