Podocyte cytoskeletal injury is characterized by dysregulation of Ca2+ signaling and increased podocyte motility, which correlate with podocyte foot process (FP) collapse and the emergence of albuminuria. Our laboratory showed that increased podocyte motility is mediated by TRPC5, an ion channel our laboratory introduced a few years ago as an important Ca2+ influx pathway in podocytes. Based on our recent work, TRPC5 channels play an important role in the emergence of albuminuria in acute models of disease. However, little is known about the role of podocyte TRPC5 signaling in the chronicity of acquired glomerular disease such as FSGS, which is the focus of this proposal. Understanding the mechanistic steps involving TRPC5 activity and how to block it is important for the many children and adults with de novo idiopathic Nephrotic Syndrome (such as FSGS), for the devastating cases of recurrence of FSGS post-transplantation and for the millions of patients with albuminuria and FSGS in the setting of diabetes and hypertension. Unfortunately, we presently lack effective treatment for these patients, so there is tremendous unmet need in this therapeutic area. Here we propose a series of detailed in vivo studies to test the hypothesis that blocking TRPC5 channels using a small molecule inhibitor can prevent progression to FSGS and kidney failure.

Public Health Relevance

The goal of this revised application is to define in vivo the molecular mechanisms by which TRPC5 channels cause proteinuric kidney disease progression, and how blocking TRPC5 channel activity may be a new therapeutic option for FSGS.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (KMBD)
Program Officer
Rys-Sikora, Krystyna E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Greka, Anna (2016) Human genetics of nephrotic syndrome and the quest for precision medicine. Curr Opin Nephrol Hypertens 25:138-43
Wieder, Nicolas; Greka, Anna (2016) Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr Nephrol 31:1047-54
Yoon, Kyoung Wan; Byun, Sanguine; Kwon, Eunjeong et al. (2015) Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349:1261669
Mundel, Peter; Greka, Anna (2015) Developing therapeutic 'arrows' with the precision of William Tell: the time has come for targeted therapies in kidney disease. Curr Opin Nephrol Hypertens 24:388-92
Greka, Anna; Weins, Astrid; Mundel, Peter (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370:1263-6
Schaldecker, Thomas; Kim, Sookyung; Tarabanis, Constantine et al. (2013) Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest 123:5298-309
Buvall, Lisa; Rashmi, Priyanka; Lopez-Rivera, Esther et al. (2013) Proteasomal degradation of Nck1 but not Nck2 regulates RhoA activation and actin dynamics. Nat Commun 4:2863