Critical sized bone defects caused by injury, disease or congenital malformations, remain a challenging problem in orthopedic medicine. Current options to restore full function to such bone defects are limited due to slow rates of regeneration of native bone tissue, second site morbidity, poor mechanical stability and lack of integration with surrounding tissues depending on the mode of clinical repair utilized. New options to accelerate the rate and extent of new bone formation, as well as integration to surrounding tissues are needed to overcome current limitations. In this competitive renewal application, a novel silk protein matrix will be bioengineered to optimize these goals to achieve large defect bone regeneration. The proposed studies build off of the results from the current grant that demonstrated the unique and useful attributes of a silk fibroin protein 3D porous matrix for in vitro and in vivo bone regeneration. In the proposed research, our goal is to accelerate the rate and extent of bone formation and integration across the defect through the combined delivery of BMP-2 and VEGF in the 3D protein matrices, and to incorporate bioengineered peptide adhesives to promote interactions with adjacent parent bone. These enhanced, degradable and ? biocompatible 3D porous silk matrices functionalized with growth factors and adhesion capabilities will be studied in a rat critical sized femur defect model to optimize their design. Subsequent to optimization, in the final aim of the study, the implants will be assessed in a critical-size goat femur defect model. Our goal is to conclude the study with an optimized design for these new 3D porous protein matrices in order to pursue human clinical trials. Outcome assessments for the three aims will be based on mineral density, homogeneity of mineral distribution and mechanical integrity of the repairs in the small and then large animal critical sized defects. To achieve the goals, an interdisciplinary team of investigators has been assembled to address the challenges with expertise in biomaterial matrix design, stem cell biology, biomechanics, imaging and veterinary medicine. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
2R01EB003210-05
Application #
7316637
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Henderson, Lori
Project Start
2003-09-30
Project End
2011-05-31
Budget Start
2007-08-13
Budget End
2008-05-31
Support Year
5
Fiscal Year
2007
Total Cost
$333,726
Indirect Cost
Name
Tufts University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
073134835
City
Medford
State
MA
Country
United States
Zip Code
02155
Martín-Moldes, Zaira; Ebrahimi, Davoud; Plowright, Robyn et al. (2018) Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras. Adv Funct Mater 28:
Silva, C; Olate, S; Pozzer, L et al. (2015) Electrical Stimulation in the Bone Repair of Defects Created in Rabbit Skulls. Int J Morphol 33:1146-1150
Cantín, Mario; Olate, Sergio; Fuentes, Ramón et al. (2015) Alveolar Ridge Conservation by Early Bone Formation After Tooth Extraction in Rabbits. A Histomorphological Study. Int J Morphol 33:369-374
Gil, Eun Seok; Park, Sang-Hyug; Hu, Xiao et al. (2014) Impact of sterilization on the enzymatic degradation and mechanical properties of silk biomaterials. Macromol Biosci 14:257-69
Zhang, W; Zhu, C; Wu, Y et al. (2014) VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 27:1-11; discussion 11-2
Wray, Lindsay S; Tsioris, Konstantinos; Gi, Eun Seok et al. (2013) Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 23:3404-3412
Gomes, Sílvia; Gallego-Llamas, Jabier; Leonor, Isabel B et al. (2013) In vivo biological responses to silk proteins functionalized with bone sialoprotein. Macromol Biosci 13:444-54
Gomes, Sílvia; Leonor, Isabel B; Mano, João F et al. (2012) Natural and Genetically Engineered Proteins for Tissue Engineering. Prog Polym Sci 37:1-17
Sun, Lin; Parker, Sara T; Syoji, Daisuke et al. (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv Healthc Mater 1:729-35
Mandal, Biman B; Grinberg, Ariela; Gil, Eun Seok et al. (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci U S A 109:7699-704

Showing the most recent 10 out of 72 publications