Critical sized bone defects caused by injury, disease or congenital malformations, remain a challenging problem in orthopedic medicine. Current options to restore full function to such bone defects are limited due to slow rates of regeneration of native bone tissue, second site morbidity, poor mechanical stability and lack of integration with surrounding tissues depending on the mode of clinical repair utilized. New options to accelerate the rate and extent of new bone formation, as well as integration to surrounding tissues are needed to overcome current limitations. In this competitive renewal application, a novel silk protein matrix will be bioengineered to optimize these goals to achieve large defect bone regeneration. The proposed studies build off of the results from the current grant that demonstrated the unique and useful attributes of a silk fibroin protein 3D porous matrix for in vitro and in vivo bone regeneration. In the proposed research, our goal is to accelerate the rate and extent of bone formation and integration across the defect through the combined delivery of BMP-2 and VEGF in the 3D protein matrices, and to incorporate bioengineered peptide adhesives to promote interactions with adjacent parent bone. These enhanced, degradable and ? biocompatible 3D porous silk matrices functionalized with growth factors and adhesion capabilities will be studied in a rat critical sized femur defect model to optimize their design. Subsequent to optimization, in the final aim of the study, the implants will be assessed in a critical-size goat femur defect model. Our goal is to conclude the study with an optimized design for these new 3D porous protein matrices in order to pursue human clinical trials. Outcome assessments for the three aims will be based on mineral density, homogeneity of mineral distribution and mechanical integrity of the repairs in the small and then large animal critical sized defects. To achieve the goals, an interdisciplinary team of investigators has been assembled to address the challenges with expertise in biomaterial matrix design, stem cell biology, biomechanics, imaging and veterinary medicine. ? ? ?

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Henderson, Lori
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Tufts University
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Martín-Moldes, Zaira; Ebrahimi, Davoud; Plowright, Robyn et al. (2018) Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras. Adv Funct Mater 28:
Silva, C; Olate, S; Pozzer, L et al. (2015) Electrical Stimulation in the Bone Repair of Defects Created in Rabbit Skulls. Int J Morphol 33:1146-1150
Cantín, Mario; Olate, Sergio; Fuentes, Ramón et al. (2015) Alveolar Ridge Conservation by Early Bone Formation After Tooth Extraction in Rabbits. A Histomorphological Study. Int J Morphol 33:369-374
Gil, Eun Seok; Park, Sang-Hyug; Hu, Xiao et al. (2014) Impact of sterilization on the enzymatic degradation and mechanical properties of silk biomaterials. Macromol Biosci 14:257-69
Zhang, W; Zhu, C; Wu, Y et al. (2014) VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 27:1-11; discussion 11-2
Gomes, Sílvia; Gallego-Llamas, Jabier; Leonor, Isabel B et al. (2013) In vivo biological responses to silk proteins functionalized with bone sialoprotein. Macromol Biosci 13:444-54
Wray, Lindsay S; Tsioris, Konstantinos; Gi, Eun Seok et al. (2013) Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 23:3404-3412
Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B et al. (2012) A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials 33:9214-24
Gomes, Silvia; Gallego-Llamas, Jabier; Leonor, Isabel B et al. (2012) Biological responses to spider silk-antibiotic fusion protein. J Tissue Eng Regen Med 6:356-68
Oliveira, A L; Sun, L; Kim, H J et al. (2012) Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 8:1530-42

Showing the most recent 10 out of 72 publications