While we now have relatively complete lists of all proteases expressed in any given organism, our understanding of the functional roles of these enzymes, for the most part, remains largely unclear. The development of new technologies that will allow the imaging of protease activity is a critical step to begin to map out complex proteolytic cascades as well as to validate proteases as biomarkers for human disease. In the first phase of funding for this project we developed fluorescently labeled small molecule activity based probes (ABPs) that target two major classes of cystiene proteases, the cathepsins and caspases. We then demonstrated that fluorescent ABPs could be used for functional, non-invasive imaging studies of these proteases in various mouse models of human cancer. In the next phase of the project we will apply the probes from the initial funding period to mouse models of inflammation and atherosclerosis. We will also engineer several new classes of imaging probes that target proteases that play roles in the regulation of inflammation. These targets include cathepsins S and K, caspases-1, -4 and -5 and the immunoproteasome. We believe that these reagents will expand the use of the ABP technology platform to a large number of important human diseases that involve the process of inflammation.

Public Health Relevance

This project outlines plans to develop fluorescently labeled imaging agents that target proteases involved in the process of inflammation. Specifically these reagents will be used to detect inflammation in atherosclerotic plaques and may ultimately lead to the generation of contrast agents for early diagnosis and disease monitoring using non-invasive imaging methods.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Microscopic Imaging Study Section (MI)
Program Officer
Conroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Sanman, Laura E; Bogyo, Matthew (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249-73
Godinat, Aurélien; Budin, Ghyslain; Morales, Alma R et al. (2014) A biocompatible "split luciferin" reaction and its application for non-invasive bioluminescent imaging of protease activity in living animals. Curr Protoc Chem Biol 6:169-89
Misas-Villamil, Johana C; Toenges, Gerrit; Kolodziejek, Izabella et al. (2013) Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection. Plant J 73:689-700
Verdoes, Martijn; Oresic Bender, Kristina; Segal, Ehud et al. (2013) Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J Am Chem Soc 135:14726-30
Deu, Edgar; Chen, Ingrid T; Lauterwasser, Erica M W et al. (2013) Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo. Proc Natl Acad Sci U S A 110:18244-9
Morell, Montse; Nguyen Duc, Thinh; Willis, Amanda L et al. (2013) Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. J Am Chem Soc 135:9139-48
Child, Matthew A; Hall, Carolyn I; Beck, Josh R et al. (2013) Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nat Chem Biol 9:651-6
Xiao, Junpeng; Broz, Petr; Puri, Aaron W et al. (2013) A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. J Am Chem Soc 135:9130-8
Puri, Aaron W; Bogyo, Matthew (2013) Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 52:5985-96
Edgington, Laura E; Verdoes, Martijn; Ortega, Alberto et al. (2013) Functional imaging of legumain in cancer using a new quenched activity-based probe. J Am Chem Soc 135:174-82

Showing the most recent 10 out of 67 publications