We have demonstrated that an adult rat with a complete, mid-thoracic spinal cord transection can regain full weight-bearing stepping over a range of speeds, loads, and even directions when the spinal cord is stimulated tonically to increase the excitability of the lumbosacral locomotor circuitry. Furthermore, we learned that load- bearing sensory information can serve as the controller of these complex motor tasks and that the performance of these tasks can be improved even further with pharmacological and motor training interventions. Within the first 2.5 years of the present BRP Grant, not within the five years as initially proposed, we have gathered sufficient data to demonstrate that the human lumbosacral spinal cord has similar capabilities. We have shown that an individual with a motor complete spinal cord injury can regain independent standing, assisted stepping, and even a significant level of voluntary control of the lower limbs in the presence of epidural stimulation after months of testing different spinal cord stimulation patterns and motor training. Just as important and as impressive is the recovery of significant levels of bladder control, blood pressure, and temperature regulation, and even sexual function in this patient (13a). These intriguing results compel us to begin additional efforts to overcome what are now recognized as the most critical factors limiting our progress toward making this intervention available in the clinic. Based on our results, it is clear that we can develop the capability to selectively activae combinations of neural networks that can enable standing and probably stepping with improved technology in humans with a functionally motor complete spinal cord injury. These functional improvements are even more likely to benefit those individuals that are functionally motor incomplete, but have severely impaired mobility. Our present accomplishments have been realized using technology that is three decades old and initially designed for a different purpose, i.e., pain management. Thus we are requesting funds to overcome the present technical, not physiological, limitations as expediently and as carefully as possible. More specifically, the rat limiting factors are the lack of technology for chronic implants for a high number of electrodes and the need for a more clear understanding of how these epidural stimulation arrays can modulate the spinal circuitries. To overcome these factors we need to 1) develop a device that will allow us to chronically implant an integrated electrode array and multiplexed stimulation device in rats with the necessary signal control capabilities, 2) evaluate hypotheses that will guide us to more clearly understand how to modulate the stimulation parameters to activate the desired spinal circuits, 3) develop a learning strategy to automatically optimize the stimulation parameters for a given patient to stand, step, or exert voluntary control, and 4) begin to explore the pathways through which voluntary control can be regained after a severe spinal cord injury.

Public Health Relevance

It now seems possible to develop a technology that will enable the recovery of postural and locomotor function in humans after a motor complete spinal cord injury. This technology includes the capability to stimulate the lower spinal cord in a manner that can enable a patient with complete paraplegia to stand and to step. This project outlines the newly recognized technical capabilities that must be developed to accomplish this goal.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Neurotechnology Study Section (NT)
Program Officer
Peng, Grace
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Arts and Sciences
Los Angeles
United States
Zip Code
Gad, Parag; Roy, Roland R; Choe, Jaehoon et al. (2015) Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. J Neurophysiol 113:3386-96
Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana et al. (2015) Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med 58:225-31
Lavrov, I; Gerasimenko, Y; Burdick, J et al. (2015) Integrating multiple sensory systems to modulate neural networks controlling posture. J Neurophysiol 114:3306-14
Gad, Parag; Roy, Roland R; Choe, Jaehoon et al. (2015) Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysis. Prog Brain Res 218:199-212
Desautels, Thomas A; Choe, Jaehoon; Gad, Parag et al. (2015) An Active Learning Algorithm for Control of Epidural Electrostimulation. IEEE Trans Biomed Eng 62:2443-55
Gerasimenko, Yury P; Lu, Daniel C; Modaber, Morteza et al. (2015) Noninvasive Reactivation of Motor Descending Control after Paralysis. J Neurotrauma 32:1968-80
Rejc, Enrico; Angeli, Claudia; Harkema, Susan (2015) Effects of Lumbosacral Spinal Cord Epidural Stimulation for Standing after Chronic Complete Paralysis in Humans. PLoS One 10:e0133998
Gad, Parag N; Roy, Roland R; Zhong, Hui et al. (2014) Initiation of bladder voiding with epidural stimulation in paralyzed, step trained rats. PLoS One 9:e108184
Angeli, Claudia A; Edgerton, V Reggie; Gerasimenko, Yury P et al. (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137:1394-409
Sayenko, Dimitry G; Angeli, Claudia; Harkema, Susan J et al. (2014) Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol 111:1088-99

Showing the most recent 10 out of 35 publications