Malignant brain tumors remain one of the deadliest forms of cancer despite maximal surgical intervention, radiation therapy and chemotherapy. Limitations in neuroimaging technology complicate the clinical management of patients with gliomas and impede efficient testing of new therapeutics. Recently, we have designed a new magnetization transfer-based MRI technique, dubbed amide proton transfer (APT) imaging, that detects a variety of amide protons of endogenous mobile proteins and peptides, such as those in the cytoplasm. Our preclinical studies and pilot clinical data using single-slice acquisition suggest that APT may provide unique information about the presence and grade of brain tumors based on increased cellular content of proteins and peptides, as revealed by MRI-guided proteomics and in vivo MR spectroscopy. However, many technical problems have to be resolved before this technique can be applied reliably for whole-brain imaging in a clinical setting. The overall goals of this proposal are to develop a fast whole-brain APT methodology for use in the clinic and to assess the capability for APT to provide unique visual data about heterogeneous portions of gliomas when compared to standard MRI sequences. To achieve this goal, we have assembled a multidisciplinary team of basic scientists and clinicians, within the framework of a national brain cancer program, who will each contribute their particular expertise in the fields of physics, biostatistics, oncology, neurosurgery, pathology, and neuroradiology.
Our specific aims are: (1) Develop a time-efficient whole-brain APT imaging technique at 3T for clinical application, (2) Determine the sensitivity and specificity of APT imaging at 3T in evaluating heterogeneous brain tumors by distinguishing tumor core from peritumoral edema and low- from high-grade gliomas, (3) Explore the origin of the APT contrast for brain tumors using APT-image guided biopsy to allow histologic validation, and (4) explore the feasibility and optimal quality of APT imaging at 7T. This work has the potential to yield a clinically applicable new MRI technique that is unique in its ability to image tissue at the protein and peptide level. This may improve the diagnostic accuracy of brain MRI for malignant gliomas and, potentially, other diseases of the brain and, hence, is of enormous clinical importance.

Public Health Relevance

The goal of this project is to develop a novel protein and peptide-based MRI technique, called amide proton transfer (APT) imaging, and to determine the sensitivity and specificity of APT imaging for the detection of brain tumors. APT-MRI may improve the diagnostic and surgical accuracy in treating malignant gliomas.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB009731-04
Application #
8245046
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Guoying
Project Start
2009-07-01
Project End
2013-09-22
Budget Start
2012-05-01
Budget End
2013-09-22
Support Year
4
Fiscal Year
2012
Total Cost
$350,383
Indirect Cost
$120,996
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lu, Jianhua; Zhou, Jinyuan; Cai, Congbo et al. (2015) Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression. Magn Reson Med 73:1615-22
Zhang, Yi; Zhou, Jinyuan; Bottomley, Paul A (2015) Minimizing lipid signal bleed in brain (1) H chemical shift imaging by post-acquisition grid shifting. Magn Reson Med 74:320-9
Hong, Xiaohua; Liu, Li; Wang, Meiyun et al. (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16:856-67
Li, Chunmei; Peng, Shuai; Wang, Rui et al. (2014) Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla. Eur Radiol 24:2631-9
Lu, Jianhua; Cai, Congbo; Cai, Shuhui et al. (2014) Chemical exchange saturation transfer MRI using intermolecular double-quantum coherences with multiple refocusing pulses. Magn Reson Imaging 32:759-65
Yuan, Jing; Chen, Shuzhong; King, Ann D et al. (2014) Amide proton transfer-weighted imaging of the head and neck at 3?T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27:1239-47
Xu, Jiadi; Yadav, Nirbhay N; Bar-Shir, Amnon et al. (2014) Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Magn Reson Med 71:1798-812
Wei, Wenbo; Jia, Guang; Flanigan, David et al. (2014) Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method. Magn Reson Imaging 32:41-7
Zhao, Xuna; Wen, Zhibo; Zhang, Ge et al. (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15:114-22
Zhang, Yi; Gabr, Refaat E; Zhou, Jinyuan et al. (2013) Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding. J Magn Reson 237:125-38

Showing the most recent 10 out of 21 publications