""""""""Electrosurgery"""""""" is now becoming universally accepted as the technique of choice in most minimally invasive surgical (MIS) procedures for achieving a variety of tissue effects ranging from dissection to hemostasis (control of bleeding) using high frequency electrical energy. However, there exists no standardized curriculum or training regimen outside the operating room (OR), for the surgical community to safely and effectively use the complex electrosurgical instruments. It is anticipated that a virtual reality (VR)-based trainer, with visual and haptic (touch) feedback, will be invaluable for electrosurgical skill training, allowing the trainees to attain competence in a controlled environment that does not expose actual patients to the bare brunt of their """"""""learning curves"""""""";customization based on individual needs;and real time feedback, mentoring and objective assessment without the need for a proctor. While a few VR-based trainers exist for laparoscopic psychomotor skill training (i.e., training for hand-eye coordination and motor skills necessary for tasks such as tool movement, cutting, suturing, etc), none exists specifically for electrosurgical procedures as major technological hurdles must be overcome, including (1) realistic physics-based modeling of the complex bio- physics of tissue cutting, hemostasis and tissue joining;(2) physical in vivo experiments to determine tissue parameters and support modeling and validation;and (3) novel realistic VR interfaces. The goal of this project is to overcome these technological barriers and design, develop and evaluate the first Virtual Electrosurgical Skill Trainer (VEST). To accomplish the goals of the project, a multidisciplinary team has been assembled to achieve the following Specific Aims: (SA1) Develop physics-based computational technology for modeling, in real time, the interaction of electrosurgical devices with soft tissue: Specifically, we will develop physics-based computational models of electrosurgical tissue cutting, joining and hemostasis based on in vivo studies. Novel computational algorithms will be developed to allow real time performance. (SA2) Design and develop a realistic VEST platform: We will integrate the computational models and experimental data generated in SA1 and develop the prototype of the VEST with training scenarios for (1) tissue dissection;(2) arc fulguration and (3) coaptive vessel closure. VEST will include real time feedback identifying errors;visual, auditory and haptic cues to guide the trainee;display of physiological consequence of surgical complications;effects of alternate surgical procedures and devices as well as automatic real time assessment of surgical skill. (SA3) Establish the validity of the VEST as a training tool. We will conduct experiments at the Skills Lab at BIDMC to ensure that the tasks in VEST reflect the technical skills in electrosurgery, and the scores measured in VEST are the appropriate performance metrics in assessing training. (SA4) Evaluate the usefulness of the VEST as a training tool. By dividing subjects into practice and non-practice groups we will study whether training on the VEST transfers positively to the OR.

Public Health Relevance

The goal of this research is to develop and validate a comprehensive computer-based technology that will allow surgical trainees to practice their surgical skills on computer-based models. Surgical procedures and techniques, learnt and perfected in this risk-free manner before application to patients, will translate to fewer operatin room errors, reduced patient morbidity and improved patient outcomes resulting in faster healing, shorter hospital stay and reduced post surgical complications and treatment costs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB014305-03
Application #
8726762
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (80))
Program Officer
Peng, Grace
Project Start
2012-09-01
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
$626,906
Indirect Cost
$158,753
Name
Rensselaer Polytechnic Institute
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
002430742
City
Troy
State
NY
Country
United States
Zip Code
12180
Demirel, Doga; Yu, Alexander; Halic, Tansel et al. (2016) Virtual Airway Skills Trainer (VAST) Simulator. Stud Health Technol Inform 220:91-7
Demirel, Doga; Butler, Kathryn L; Halic, Tansel et al. (2016) A hierarchical task analysis of cricothyroidotomy procedure for a virtual airway skills trainer simulator. Am J Surg 212:475-84
Nemani, Arun; Ahn, Woojin; Gee, Denise et al. (2016) Objective Surgical Skill Differentiation for Physical and Virtual Surgical Trainers via Functional Near-Infrared Spectroscopy. Stud Health Technol Inform 220:256-61
Dargar, Saurabh; Akyildiz, Ali Cagdas; De, Suvranu (2016) Development of a Soft Tissue Elastography Robotic Arm (STiERA). Stud Health Technol Inform 220:77-83
Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra et al. (2016) Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery. Stud Health Technol Inform 220:171-4
Pan, Jun J; Ahn, Woojin; Dargar, Saurabh et al. (2016) Graphic and haptic simulation for transvaginal cholecystectomy training in NOTES. J Biomed Inform 60:410-21
Ahn, Woojin; Dorozhkin, Denis; Schwaitzberg, Steven et al. (2016) Developing Modularized Virtual Reality Simulators for Natural Orifice Translumenal Endoscopic Surgery (NOTES). Stud Health Technol Inform 220:1-4
Dargar, Saurabh; De, Suvranu; Sankaranarayanan, Ganesh (2016) Development of a Haptic Interface for Natural Orifice Translumenal Endoscopic Surgery Simulation. IEEE Trans Haptics 9:333-44
Schwaitzberg, Steven D; Dorozhkin, Denis; Sankaranarayanan, Ganesh et al. (2016) Natural orifice translumenal endoscopic surgery (NOTES): emerging trends and specifications for a virtual simulator. Surg Endosc 30:190-8
Sankaranarayanan, Ganesh; Li, Baichun; Manser, Kelly et al. (2016) Face and construct validation of a next generation virtual reality (Gen2-VR) surgical simulator. Surg Endosc 30:979-85

Showing the most recent 10 out of 54 publications