A hierarchal and tightly controlled organization of various cell types is the hallmark of normal tissues and organs, and the hypothesis underlying this proposal is that pre-defining the specific location and resultant cell- cell interactions of individual cells within a 3D tissue construct will allow one to create highly functional tissues in which the role of cell-cell interactions on cell phenotype can be precisely delineated. This concept will be explored by developing a 3D model of human hematopoiesis, in which osteoprogenitors and vascular cells will be probed for their roles in defining the hematopoietic stem cell (HSC) niche.
The specific aims i nclude (1) the development of microfluidic techniques to allow large-scale encapsulation of single cells in highly defined extracellular matrix mimics in order to determine how matrix cues regulate mesenchymal stem cell differentiation at the single cell level, (2) the creation of hybrid integrated circuit/microfluidic circuit systems to enable one to assemble picoliter drops containing individual cells and synthetic ECM into 3D assemblies with pre-defined structure and organization, and (3) determining whether appropriate in vitro assembly of HSCs and cells representative of the bone marrow HSC niche can yield functional hematopoietic tissues capable of recreating hematopoiesis in vitro. Success in this project will lead to the creation of a new set of tools that will enable formation of 3D tissues with precisely defined cell placement, and homotypic and heterotypic cell-cell interactions. These tools are likely to be broadly useful to the creation of new in vitro models of tissue development and drug screening, and in vivo tissue replacements from a variety of cell types. As stem cells are particularly sensitive to environmental cues, inappropriate cell-cell and cell-matrix interactions likely lead to the irreversible and undesirable alterations in stem cell differentiation fate found in culture. The systems developed in this project will allow us to investigate the specific role of vascular cells and osteoprogenitors/osteoblasts in maintaining the human HSC niche, which is a difficult question to address in vivo. It is crucial to better define and create models of the niche to understand normal hematopoiesis and pathologies involving blood cells, and to enable hematopoiesis on demand in various therapeutic venues. The key studies to date on this topic have relied on rodent models, and the relevance of many findings to human biology is currently unclear. (End of Reviewers'Comment)

Public Health Relevance

The production of blood cells (hematopoiesis) is a continuous, critical activity of stem cell in the body, and its dysregulation has severe repercussions. This project will lead to a better understanding of this process by developing new culture models of human hematopoiesis, and it is expected these models will provide insight on current therapies using blood stem cells, could lead to the production of human blood cells that could be used to treat patients, and may also improve our understanding of diseases involving blood cell production.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-N (M1))
Program Officer
Hunziker, Rosemarie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Engineering
United States
Zip Code
Morrison, Sean J; Scadden, David T (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327-34
Spencer, Joel A; Ferraro, Francesca; Roussakis, Emmanuel et al. (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269-73
Scadden, David T (2014) Nice neighborhood: emerging concepts of the stem cell niche. Cell 157:41-50
Kalaitzidis, Demetrios; Scadden, David T (2014) Tic-TACs: refreshing hair growth. Cell 157:769-70
Krause, Daniela S; Fulzele, Keertik; Catic, Andre et al. (2013) Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med 19:1513-7
Abate, Adam R; Hung, Tony; Sperling, Ralph A et al. (2013) DNA sequence analysis with droplet-based microfluidics. Lab Chip 13:4864-9
Mazutis, Linas; Gilbert, John; Ung, W Lloyd et al. (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870-91
Sykes, Stephen M; Scadden, David T (2013) Modeling human hematopoietic stem cell biology in the mouse. Semin Hematol 50:92-100