The use of solid scaffolds that provide the correct mechanical and chemical cues to cells is a promising approach for guiding tissue repair, promoting tissue-scaffold integration and achieving adequate neovascularization. It is becoming increasingly clear that tuning scaffold rigidity is a powerful way to control cell function but how scaffold rigidity regulates gene expression is not well-understood. The focus of this proposal is on the molecular mechanisms by which gene expression is controlled by the mechanical properties of the substrate. We propose to test the hypothesis that substrate rigidity controls gene expression by tuning nuclear tension. Strong support for this hypothesis comes from our preliminary results: we have found that substrate rigidity significantly alters nuclear shape through the modulation of cytoskeletal forces. We have also established that cytoskeletal force transfer to the nuclear surface is mediated by nuclear membrane embedded LINC (for linker of nucleoskeleton to cytoskeleton) complex proteins. Our approach is to 1) determine which genes are turned on or off in a substrate rigidity dependent manner, 2) examine the extent to which LINC complex proteins are required for rigidity control of genes, and 3) characterize the mechanisms by which rigidity modulation of nuclear shape controls intra-nuclear chromatin structure, spatial location of genes and epigenetic modifications that collectively regulate gene expression.
Two specific aims are proposed:
Aim 1 : To test the hypothesis that substrate rigidity controls gene expression in a LINC complex dependent manner.
Aim 2 : To characterize the mechanisms by which nuclear tension regulates the expression of genes. The successful completion of these aims will have broad-ranging impact, in fields as diverse as cell-biomaterial interactions, nuclear and cell mechanics and molecular and cell biology of gene regulation. Collectively, this work is of strong interest to both engineering and scientific disciplines. The project integrates the expertise of three collaborators (Lele, Nickerson and Roux) from very different backgrounds (bioengineering, molecular biology, cell biology). The interaction between investigators of such varied background is expected to result in new and highly significant discoveries in the proposed problem area. Each investigator will contribute innovative, cutting-edge techniques in the fields of molecular biology, cell and molecular imaging, biomaterials and cell and nuclear mechanics. The completion of these aims will enhance our understanding of how scaffold properties direct vascular cells. As a result, we expect that they will promote the development of improved scaffolds for many tissue engineering applications.

Public Health Relevance

Many applications in tissue engineering involve cell culture on solid scaffolds with defined properties. We seek to improve scientific understanding of how scaffold properties regulate gene expression in cells. This will help improve our ability to contro cells and hence engineer tissues with superior performance.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB014869-02
Application #
8517716
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Hunziker, Rosemarie
Project Start
2012-08-01
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$389,761
Indirect Cost
$118,989
Name
University of Florida
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Tocco, Vincent J; Neelam, Srujana; Zhang, Qiao et al. (2018) Direct Force Probe for Nuclear Mechanics. Methods Mol Biol 1840:81-90
Tocco, Vincent J; Li, Yuan; Christopher, Keith G et al. (2018) The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells. J Cell Physiol 233:1446-1454
Zhang, Qiao; Tamashunas, Andrew C; Lele, Tanmay P (2018) A Direct Force Probe for Measuring Mechanical Integration Between the Nucleus and the Cytoskeleton. J Vis Exp :
Lele, Tanmay P; Dickinson, Richard B; Gundersen, Gregg G (2018) Mechanical principles of nuclear shaping and positioning. J Cell Biol 217:3330-3342
Nickerson, Jeffrey A; Wu, Qiong; Imbalzano, Anthony N (2017) Mammalian SWI/SNF Enzymes and the Epigenetics of Tumor Cell Metabolic Reprogramming. Front Oncol 7:49
Birendra Kc; May, Danielle G; Benson, Benjamin V et al. (2017) VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 28:2241-2250
Kent, Ian A; Lele, Tanmay P (2017) Microtubule-based force generation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:
Kent, Ian A; Rane, Parag S; Dickinson, Richard B et al. (2016) Transient Pinning and Pulling: A Mechanism for Bending Microtubules. PLoS One 11:e0151322
Neelam, Srujana; Dickinson, Richard B; Lele, Tanmay P (2016) New approaches for understanding the nuclear force balance in living, adherent cells. Methods 94:27-32
Torbati, Mehdi; Lele, Tanmay P; Agrawal, Ashutosh (2016) An unresolved LINC in the nuclear envelope. Cell Mol Bioeng 9:252-257

Showing the most recent 10 out of 36 publications