Activatable optical and magnetic resonance contrast agents have been devised to sense and visualize molecular activity in vivo. However, though highly sensitive, nuclear imaging has been limited considerably in sensing biological activities by the physical inability to switch radioactivity """"""""on"""""""" or """"""""off"""""""". To fill this gap, we hypothesize that Cerenkov luminescence imaging in conjunction with nanoparticles can be utilized to create activatable nanosensors based on radioactive decay. Blue Cerenkov light is generated by the passage of particulate radioactive emissions (such as positrons or electrons) through tissues. Cerenkov light allows for optical imaging of radiotracers with highly sensitive cameras. Based on the results of our previously demonstrated in vivo Cerenkov luminescence imaging from radiotracers, the overall objective of this application is to sense enzymatic activities associated with cancer in vivo using radiometals and modified nanoparticles In this new R01 application, cancer-related endoproteases modulate the physical interaction between different nanoparticles and a radiometals as Cerenkov emitters. Our hypothesis will be tested in three specific aims on the basis of strong preliminary data from our lab:
in Specific Aim (1), we will explore different design principles of the nanoparticles in evaluating the efect of diferent coatings and radiometals onto the Cerenkov emission;
in Specific Aim (2), we will sense the enzymatic activity of specific endoproteases (matrix metalloproteinase-2, cathepsin B and urokinase-type plasminogen activator) in vivo using Cerenkov imaging;
in Specific Aim (3), the objective is to implement a process to quantify the nanosensor's activation and thus the enzymatic activity. This is based on a combination of Cerenkov imaging with positron emission tomography (PET) imaging. PET imaging allows for an independent quantification of the nanosensors in the tumor (using the Specific Uptake Value (SUV)) irrespective of their current activation state. We propose an inherent method to correct for the tissue attenuation and to perform a relative quantification of the signal and thus enzymatic activity. We believe that the proposed research constitutes an innovative direction and a paradigm shift in molecular imaging as it allows for sensing of enzymatic activity with radiotracers with an optical read-out, combining the unique sensitivity of PET and optical imaging together. The contribution of the proposed research is significant as it expands the potential application for nuclear imaging. It provides an entire new path for radiotracers to detect relevant biological signals. These nanosensors could ultimately find their way into the clinical realm, for example in intraoperative imaging.

Public Health Relevance

In this research, we develop a new type of self-powered light emitting nanoparticle that is switched on only when specific biological events occur, such as when cells die or initiate replication. By using a sensitive camera system to detect the light, it s posible to monitor these events non-invasively in live animals and thereby gain new knowledge about both diseased and normal cell functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB014944-03
Application #
8607183
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sastre, Antonio
Project Start
2012-04-01
Project End
2016-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
City
New York
State
NY
Country
United States
Zip Code
10065
Haedicke, Katja; Brand, Christian; Omar, Murad et al. (2017) Sonophore labeled RGD: a targeted contrast agent for optoacoustic imaging. Photoacoustics 6:1-8
Zhao, Yiming; Shaffer, Travis M; Das, Sudeep et al. (2017) Near-Infrared Quantum Dot and 89Zr Dual-Labeled Nanoparticles for in Vivo Cerenkov Imaging. Bioconjug Chem 28:600-608
Lockau, Hannah H; Neuschmelting, Volker; Ogirala, Anuja et al. (2017) Dynamic 18F-FDG PET- Lymphography for in Vivo Identification of Lymph Node Metastases in Murine Melanoma. J Nucl Med :
Heckert, Blaze; Banerjee, Tuhina; Sulthana, Shoukath et al. (2017) Design and Synthesis of New Sulfur-Containing Hyperbranched Polymer and Theranostic Nanomaterials for Bimodal Imaging and Treatment of Cancer. ACS Macro Lett 6:235-240
Shaffer, Travis M; Pratt, Edwin C; Grimm, Jan (2017) Utilizing the power of Cerenkov light with nanotechnology. Nat Nanotechnol 12:106-117
Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan (2016) Optical Imaging of Ionizing Radiation from Clinical Sources. J Nucl Med 57:1661-1666
B├╝chel, Gabriel E; Carney, Brandon; Shaffer, Travis M et al. (2016) Near-Infrared Intraoperative Chemiluminescence Imaging. ChemMedChem 11:1978-82
Shaffer, Travis M; Harmsen, Stefan; Khwaja, Emaad et al. (2016) Stable Radiolabeling of Sulfur-Functionalized Silica Nanoparticles with Copper-64. Nano Lett 16:5601-4
Neuschmelting, Volker; Lockau, Hannah; Ntziachristos, Vasilis et al. (2016) Lymph Node Micrometastases and In-Transit Metastases from Melanoma: In Vivo Detection with Multispectral Optoacoustic Imaging in a Mouse Model. Radiology 280:137-50
Pratt, Edwin C; Shaffer, Travis M; Grimm, Jan (2016) Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:872-890

Showing the most recent 10 out of 22 publications