It is generally accepted that chemical control of insects at some level will be necessary for the preservation of human health and for agricultural productivity in the foreseeable future. If we are to meet these health and productivity standards while protecting the environment and man from potentially dangerous pesticides, we must a) develop safe, biodegradable pest control agents, b) understand xenobiotic metabolism in target and nontarget organisms, and c) develop rapid, sensitive analytical methods capable of detecting potentially dangerous xenobiotics. Thus, the long-term goal of this project is the safeguarding of human and environmental health by solving aspects of the above problems. I. We will develop new leads for environmentally acceptable insect control agents by investigating the critical events in the metamorphosis of our most destructive insect pests. THese leads can hopefully be exploited by both classical chemistry and genetic engineering. II. Since the epoxide moiety is the reactive center in some of the most dangerous toxins, mutagens and carcinogens known, we will investigate its metabolism in mammalian systems. Special attention will be paid to the induction and inhibition of these systems. Using selective substrates, inducers and inhibitors, we will work toward the development of a predictive model of epoxide catabolism. III. Finally, we will evaluate immunochemical technology as a technique capable of rapidly and inexpensively analyzing both classical and innovative pesticides.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES002710-09
Application #
3250022
Study Section
Toxicology Study Section (TOX)
Project Start
1980-12-01
Project End
1992-11-30
Budget Start
1988-12-01
Budget End
1989-11-30
Support Year
9
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
Earth Sciences/Resources
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Taha, Ameer Y; Hennebelle, Marie; Yang, Jun et al. (2018) Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 138:71-80
Kodani, Sean D; Wan, Debin; Wagner, Karen M et al. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3:14076-14086
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823
Pecic, Stevan; Zeki, Amir A; Xu, Xiaoming et al. (2018) Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostaglandins Other Lipid Mediat 136:90-95
Yamanashi, Haruto; Boeglin, William E; Morisseau, Christophe et al. (2018) Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 59:684-695
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550

Showing the most recent 10 out of 450 publications