Many environmental toxins are oxidants. Proteins, which are major targets of oxidative modification, loose function/activity and must be proteolyticaly degraded or they will aggregate, and form cross-linked cellular inclusion bodies. In previous cycles of this grant, we have shown a major role for the proteasome in detoxifying oxidized proteins. Now we find proteasome is under dynamic control, exchanging regulators, and catalytic subunits in mild, acute stress. Understanding dynamic and inducible mechanisms of detoxification by proteasome is our immediate priority. Our broad, long-term objective is to define the mechanism(s) by which oxidized proteins undergo selective proteasomal proteolysis, the contributions of this detoxification system to health, and the impairment of proteasome under chronic or repeated stress.
Our specific aims are to test the following hypotheses: 1) During acute oxidative stress, 20S proteasome undergoes activation by 11 S(PA28) or PA200 regulators, or by PARP or HSP90;whereas 26S proteasome undergoes disassembly and reassembly facilitated by HSP70;2) Expression of proteasome, immunoproteasome, and proteasome regulators, is transiently induced by acute oxidative stress, allowing more efficient degradation of oxidized proteins;and 3) While acute (mild) oxidative stress transiently improves the ability of the proteasomal system to protect against oxidatively modified proteins, chronic or repeated stress actually impairs such adaptation and increases long-term susceptibility to environmental toxins. Hydrogen peroxide will be the major oxidant studied. Limited comparative studies will be conducted with peroxynitrite, hypochlorous acid/hypochlorite, hydroxyl radical, redox cycling quinones, and a hyperoxic cultivation environment. The importance of proteasome regulators and subunit exchanges will be tested with a combination of knockout mutants, siRNA (or antisense), antibody precipitation, and biochemical techniques. Direct activation versus increased subunit/regulator expression will be tested with transcriptional and translational inhibitors. Direct regulation by phosphorylation or glutathionylation will also be tested. Constitutively overexpressing cells and tet-off conditional transgenic cells, for proteasome subunits and regulators, will be used to model mechanisms of stress-adaptation, and to test our conclusions. Our studies will contribute to public health through improved understanding of mechanisms of toxicity, especially acute exposure versus chronic or repeated insults.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES003598-23
Application #
7778301
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Thompson, Claudia L
Project Start
1985-06-15
Project End
2012-02-29
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
23
Fiscal Year
2010
Total Cost
$336,054
Indirect Cost
Name
University of Southern California
Department
Type
Other Domestic Higher Education
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Cadet, Jean; Davies, Kelvin J A (2017) Oxidative DNA damage & repair: An introduction. Free Radic Biol Med 106:100-110
Pomatto, Laura C D; Wong, Sarah; Carney, Caroline et al. (2017) The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging (Albany NY) 9:1153-1185
Pomatto, Laura C D; Raynes, Rachel; Davies, Kelvin J A (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 92:739-753
Pomatto, Laura C D; Carney, Caroline; Shen, Brenda et al. (2017) The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Curr Biol 27:1-15
Cadet, Jean; Davies, Kelvin J A; Medeiros, Marisa Hg et al. (2017) Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 107:13-34
Cadet, Jean; Davies, Kelvin J A (2017) Oxidative DNA damage & repair: An introduction. Free Radic Biol Med 107:2-12
Raynes, Rachel; Juarez, Crystal; Pomatto, Laura C D et al. (2017) Aging and SKN-1-dependent Loss of 20S Proteasome Adaptation to Oxidative Stress in C. elegans. J Gerontol A Biol Sci Med Sci 72:143-151
Bota, Daniela A; Davies, Kelvin J A (2016) Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 100:188-198
Reeg, Sandra; Jung, Tobias; Castro, José P et al. (2016) The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med 99:153-166
Forman, Henry Jay; Bernardo, Angelito; Davies, Kelvin J A (2016) What is the concentration of hydrogen peroxide in blood and plasma? Arch Biochem Biophys 603:48-53

Showing the most recent 10 out of 43 publications