Previous studies on lead have typically analyzed covariate markers of social stress as independent predictors of neurodevelopment, considering them potential confounders. There are biological reasons to believe that psychosocial stress potentiates the toxicity of lead. If so, then understanding this relationship may be the key to designing effective public health interventions designed to improve neurodevelopment in children. The ELEMENT cohort has created the infrastructure for such a study and is uniquely positioned to address these important neurotoxicological questions. In this competing renewal, we hypothesize that lead exposure and social stressors experienced jointly in pregnancy and infancy will have multiplicatively increased deleterious effects on neurodevelopment (i.e. environment X environment interactions). Based on work conducted by others in animals, this should result in selective impairments in memory (hippocampus) and fixed interval responses (nucleus accumbens) due to the established vulnerability of these structures to stress and lead. Our results thus far have established a consistent pattern of adverse effects to both lead and social stress, as well as disturbed salivary cortisol rhythms following high levels of stress. We also find multiplicative changes in cortisol rhythms when these exposures occur in the context of high lead exposure. Cortisol may thus represent a mechanistic link between lead and stress. We have already enrolled 1000 infants in Mexico City measuring stress and lead exposure longitudinally beginning in the 2nd trimester through age 2 years. To date, we have measured only infant development via Bayley Scales. In this renewal we propose to measure more detailed neurophenotypes as the children age (behavior, cognition, memory) as well as tests specific to hippocampal and nucleus accumbens function. Social and educational interventions, if targeted properly, could be effective treatments. This research will identify those interventions.

Public Health Relevance

This study will examine the effects of perinatal exposure to psychosocial stressors (violence, perceived stress, depression) on childhood neurobehavioral and cognitive development in school age children. In addition to independent effects of stress, the study will also examine the potential modifying effects of the social environment (i.e., psychological stress) on lead toxicity. Such knowledge may inform efforts to design programs that improve neurodevelopmental trajectories in high-risk disadvantaged populations disproportionately exposed to adverse physical and social environments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES013744-08
Application #
8576397
Study Section
Neurological, Aging and Musculoskeletal Epidemiology (NAME)
Program Officer
Gray, Kimberly A
Project Start
2005-04-01
Project End
2016-10-31
Budget Start
2013-11-01
Budget End
2014-10-31
Support Year
8
Fiscal Year
2014
Total Cost
$842,600
Indirect Cost
$210,274
Name
Icahn School of Medicine at Mount Sinai
Department
Pediatrics
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Muñoz-Rocha, Teresa Verenice; Tamayo Y Ortiz, Marcela; Romero, Martín et al. (2017) Prenatal co-exposure to manganese and depression and 24-months neurodevelopment. Neurotoxicology :
Rosa, Maria José; Just, Allan C; Kloog, Itai et al. (2017) Prenatal particulate matter exposure and wheeze in Mexican children: Effect modification by prenatal psychosocial stress. Ann Allergy Asthma Immunol 119:232-237.e1
Rosa, Maria José; Just, Allan C; Guerra, Marco Sánchez et al. (2017) Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environ Int 98:198-203
Sanders, Alison P; Gennings, Chris; Svensson, Katherine et al. (2017) Bacterial and cytokine mixtures predict the length of gestation and are associated with miRNA expression in the cervix. Epigenomics 9:33-45
Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D (2017) Estimators for longitudinal latent exposure models: examining measurement model assumptions. Stat Med 36:2048-2066
Claus Henn, Birgit; Bellinger, David C; Hopkins, Marianne R et al. (2017) Maternal and Cord Blood Manganese Concentrations and Early Childhood Neurodevelopment among Residents near a Mining-Impacted Superfund Site. Environ Health Perspect 125:067020
Rodosthenous, Rodosthenis S; Burris, Heather H; Svensson, Katherine et al. (2017) Prenatal lead exposure and fetal growth: Smaller infants have heightened susceptibility. Environ Int 99:228-233
Braun, Joseph M; Bellinger, David C; Hauser, Russ et al. (2017) Prenatal phthalate, triclosan, and bisphenol A exposures and child visual-spatial abilities. Neurotoxicology 58:75-83
Zheng, Laura Y; Sanders, Alison P; Saland, Jeffrey M et al. (2017) Environmental exposures and pediatric kidney function and disease: A systematic review. Environ Res 158:625-648
Renzetti, Stefano; Just, Allan C; Burris, Heather H et al. (2017) The association of lead exposure during pregnancy and childhood anthropometry in the Mexican PROGRESS cohort. Environ Res 152:226-232

Showing the most recent 10 out of 99 publications