We are using systematic experimental and computational approaches to map the molecular networks induced by DNA damage. Since DNA damage response pathways are conserved across eukaryotes, our studies are focused on the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe-impacting our basic knowledge of the DNA damage response while keeping within species for which systems data are easily obtained. In our past five years of funding (NIH grant R01-ES14811), significant progress was made in mapping the architecture of transcriptional networks responding to DNA damage and in perturbing these networks to reveal their key state transitions. In the present proposal, we turn our attention to the global networks of DNA-damage-induced kinases and other signaling proteins.
Specific Aim 1 will use Epistatic MiniArray Profiling (E-MAP) to develop dynamic genetic interaction maps of signaling across a panel of ten diverse DNA damaging agents. Genetic interaction screens will be conducted among a core set of ~500 genes including all kinases, phosphatases, and transcription factors (TFs) in budding and fission yeast.
Specific Aim 2 will use expression profiling to identify functional interactions between kinases and TFs in response to DNA damage. Kinase/TF pairs that regulate similar damage-responsive genes will be investigated for functional association by seeking specific phosphorylation sites on the TF and exploring the functional consequences of TF phosphorylation on DNA repair.
Specific Aim 3 will seek to computationally integrate the interaction data to identify conserved network modules and to experimentally categorize these modules by their specific functions related to DNA repair. Network maps will be visualized and processed using Cytoscape and deposited in the CellCircuits database. Developing a comprehensive map of DNA-damage-induced genetic interactions will be critical for understanding the genetic polymorphisms that confer susceptibility to DNA damage. Such networks are also a predictive tool for synthetic lethality and epistasis in human cancer.

Public Health Relevance

We propose to develop a comprehensive genetic and physical interaction map of signal transduction in response to DNA damage. This map is a major biomedical resource which will be used to identify and target chemotherapeutic agents and their modulators.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-N (02))
Program Officer
Balshaw, David M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Lee, KiYoung; Sung, Min-Kyung; Kim, Jihyun et al. (2014) Proteome-wide remodeling of protein location and function by stress. Proc Natl Acad Sci U S A 111:E3157-66
Jaehnig, Eric J; Kuo, Dwight; Hombauer, Hans et al. (2013) Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep 4:174-88
Srivas, Rohith; Costelloe, Thomas; Carvunis, Anne-Ruxandra et al. (2013) A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring. Cell Rep 5:1714-24
Guenole, Aude; Srivas, Rohith; Vreeken, Kees et al. (2013) Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol Cell 49:346-58
Zimmermann, Christine; Chymkowitch, Pierre; Eldholm, Vegard et al. (2011) A chemical-genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6-Bre1 to cell cycle progression. Proc Natl Acad Sci U S A 108:18748-53
Kuo, Dwight; Tan, Kai; Zinman, Guy et al. (2010) Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biol 11:R77
Bandyopadhyay, Sourav; Mehta, Monika; Kuo, Dwight et al. (2010) Rewiring of genetic networks in response to DNA damage. Science 330:1385-9
van Steensel, Bas; Braunschweig, Ulrich; Filion, Guillaume J et al. (2010) Bayesian network analysis of targeting interactions in chromatin. Genome Res 20:190-200
Putnam, Christopher D; Jaehnig, Eric J; Kolodner, Richard D (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 8:974-82
Kelley, Ryan; Ideker, Trey (2009) Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide. PLoS Genet 5:e1000488

Showing the most recent 10 out of 22 publications