Chronic arsenic exposure is known to be associated with increased morbidity and mortality from both cancerous and non-cancerous effects. The metabolism of inorganic arsenic to more toxic, trivalent methylated species, in particular monomethylarsonous acid (MMAsIII), is believed to play a key role in arsenic toxicity and carcinogenesis in humans. MMAsIII is capable of inducing malignant transformation in human cells, and population-based studies have shown that an increase in the percentage of urinary and blood arsenic present as MMAsIII, is linked to increased susceptibility to skin lesions and several types of cancer. The mechanism through which MMAsIII induces cell transformation and carcinogenicity has not yet been elucidated but studies suggest the involvement of epigenetic mechanisms. Arsenic exposure results in changes in histone acetylation, a key feature of gene regulation, in humans and in cultured human cells. We recently demonstrated a global and lysine specific decrease in histone acetylation upon acute MMAIII exposure in human urothelial cells (UROtsa cells), the target for arsenic-induced carcinogenesis. Further studies showed that chronic low level of MMAIII exposure in UROtsa cells upregulates the expression and activity of histone deacetylases (HDACs), and leads to a cross-board decrease in histone acetylation levels both globally and lysine residues specifically, whereas pan-HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), reverses these effects caused by MMAIII and blocks MMAIII-induced cell malignant transformation. Based on these preliminary observations, we hypothesize that prolonged exposure to an environmentally relevant level of MMAIII affects the activity and expression of histone acetyltransferases (HATs) and HDACs, resulting in a reduced histone acetylation and subsequent changes in the gene regulatory regions of genomic DNA and leading to aberrant expression of key growth controlling genes and a neoplastic transformation. The long-term goals of our research are to elucidate the molecular mechanisms of arsenic carcinogenesis and facilitate the development of novel strategies to prevent, diagnose, or treat for the arsenic associated diseases including cancer. To this end, we will utilize a MMAIII-induced UROtsa cell malignant transformation model to comprehensively investigate the mechanisms and tumorigenic outcomes of histone acetylation changes upon MMAIII exposure and/or pan-HDACs and HDAC selective inhibitors treatment, and to identify aberrant gene expression and the genomic regulatory regions that are inappropriately targeted by the altered histone acetylation (Aim 1 &2). We will then verify if the histone acetylation signature and the resultant aberrant expression of key genes identified in malignantly transformed UROtsa cells are manifested in specimens from humans exposed to arsenic (Aim 3). The experiments proposed are envisioned to elucidate the mechanism(s) and outcomes of MMAIII-induced acetylation changes in specific lysine residues in histone. The findings will provide insights into potential biomarkers of arsenic carcinogenicity and future diagnosis of disease risk from other exposures.

Public Health Relevance

The proposed project is relevant and fundamentally important to public health because millions of people worldwide including in the US are exposed to unsafe levels of arsenic which has been shown to lead to increased morbidity and mortality from both cancerous and non-cancerous effects. Particularly, the proposed research is relevant to NIEHS's mission to discover how the environment affects people in order to promote healthier lives.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
1R01ES022629-01A1
Application #
8695658
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Tyson, Frederick L
Project Start
2014-08-19
Project End
2018-05-31
Budget Start
2014-08-19
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$353,239
Indirect Cost
$128,239
Name
State University of New York at Buffalo
Department
Public Health & Prev Medicine
Type
Schools of Allied Health Profes
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Zhang, Hao; Ge, Yichen; He, Ping et al. (2015) Interactive Effects of N6AMT1 and As3MT in Arsenic Biomethylation. Toxicol Sci 146:354-62
Ren, Xuefeng; Gaile, Daniel P; Gong, Zhihong et al. (2015) Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress. Toxicol Appl Pharmacol 283:198-209
Zhu, Jinqiu; Dubois, Amber; Ge, Yichen et al. (2015) Application of human haploid cell genetic screening model in identifying the genes required for resistance to environmental toxicants: Chlorpyrifos as a case study. J Pharmacol Toxicol Methods 76:76-82