This application seeks to transform the current paradigm for blood metal analysis through the development of a sensor that will provide rapid and accurate point-of-care measurement of blood metals in susceptible pediatric populations. Biomarkers of pediatric, low-level, mixed exposures to lead (Pb), manganese (Mn), and cadmium (Cd) are essential. There is a clear need for improved technology to quantitatively assess and identify adverse consequences of these exposures. Current approaches suffer from high costs including extensive labor, equipment and time-consuming laboratory procedures, and often demonstrate long turnaround times. This project addresses this need by developing a novel sensor technology for simultaneous and swift measurement of heavy metals in whole blood. Our approach is to integrate anodic stripping voltammetry with our deep expertise in lab-on-a-chip and microfluidics. Our multidisciplinary team of engineers, chemists, and clinical/environmental health experts has already taken the first steps towards developing such a device and has demonstrated feasibility of the sensor through pilot tests. We are now poised to fully develop the sensor system for point-of-care application. This project will be the first to develop an environmentally-friendly lab-on- a-chip sensor for point-of-care multi-metal analysis, which will provide real-time analysis of metals for susceptible populations, in national and international research and clinical settings. Collaboration with our commercialization partner will position the multi-metal sensor for wide-spread use in clinical and research settings.

Public Health Relevance

This application seeks to develop a laboratory-in-a-chip sensor for rapid and accurate point-of-care measurement of multiple metals (manganese, lead, and cadmium) in blood. Whole blood analysis is the most common method for determining metal exposure and assessment of health outcomes, yet multi-metal analysis and sample collection from children are highly problematic. The uniqueness of this study is the environmentally-friendly nature of the sensor, child-friendly requirement of only drops of blood per analysis, ability to conduct multiple blood measurements on site (point-of-care), and potential use in occupational and international research settings.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
1R01ES022933-01A1
Application #
8506647
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Balshaw, David M
Project Start
2013-09-04
Project End
2017-05-31
Budget Start
2013-09-04
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$332,437
Indirect Cost
$119,937
Name
University of Cincinnati
Department
None
Type
Schools of Engineering
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Pei, Xing; Kang, Wenjing; Yue, Wei et al. (2014) Improving Reproducibility of Lab-on-a-Chip Sensor with Bismuth Working Electrode for Determining Zn in Serum by Anodic Stripping Voltammetry. J Electrochem Soc 161:B3160-B3166
Pei, Xing; Kang, Wenjing; Yue, Wei et al. (2014) Disposable copper-based electrochemical sensor for anodic stripping voltammetry. Anal Chem 86:4893-900