Our long-range goal is to understand the biochemical processes within photoreceptor cells, that if disrupted, lead to cell dysfunction and degeneration. The retinal degeneration (rd) chicken, the only animal model of inherited retinal disease that possesses a cone-dominant retina, is the focus of the proposed studies. Retinas of chicks homozygous for the rd mutation are fully differentiated and ultrastructurally indistinguishable from normal chick retina at hatch but do not produce scotopic or photopic ERG responses following light stimulation. Within 7- 10 days of hatch, the photoreceptors begin to degenerate. The molecular defect underlying this phenotype is not known; however, levels of cyclic GMP in the photoreceptor cells of the mutant retina are significantly reduced prior to their degeneration suggesting that the rd gene may encode a protein directly involved in photoreceptor cGMP metabolism. Mammalian photoreceptors express at least two guanylate cyclase activating proteins (GCAPs), GCAP1 and GCAP2 (p24). Western blot analyses show that normal chick retina contains a third GCAP protein that is antigenically similar to GCAP1. Western blot analyses of this protein in the rd mutant retina shows that it is not expressed in this retina.
The aims of the proposed studies are (1) to clone and characterize the GCAP1 variant present in normal chicken retina that is not expressed in the mutant retina and (2) to identify possible mutations in the GCAP1 candidate gene that would disable expression of this variant in the mutant retina. GCAP cDNAs will be amplified from first-strand cDNA using the PCR and/or isolated from our normal and mutant chick retina cDNA expression libraries using antibody and cDNA probes. The clones will be analyzed by sequencing, northern and Southern blot. Anti-peptide antibodies will be generated to allow western blot and immunocytochemical analyses of the proteins encoded by these clones. Mutations found within the GCAP candidate cDNAs will be verified through gene analyses, and pedigree analyses will be carried out to confirm association of the mutation with the rd mutant phenotype. Eventually, mutant GCAP will be expressed in vitro and tested for its competence to activate guanylate cyclase. The results of these studies will improve our understanding of the cGMP metabolism and how a defect in cGMP synthesis leads to retinal disease.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011388-02
Application #
2391754
Study Section
Visual Sciences C Study Section (VISC)
Project Start
1996-04-01
Project End
1999-03-31
Budget Start
1997-04-01
Budget End
1998-03-31
Support Year
2
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Florida
Department
Neurosciences
Type
Schools of Medicine
DUNS #
073130411
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Semple-Rowland, Susan L; Berry, Jonathan (2014) Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods 66:466-73
Semple-Rowland, Susan; Madorsky, Irina; Bolch, Susan et al. (2013) Activation of phospholipase C mimics the phase shifting effects of light on melatonin rhythms in retinal photoreceptors. PLoS One 8:e83378
Verrier, Jonathan D; Madorsky, Irina; Coggin, William E et al. (2011) Bicistronic lentiviruses containing a viral 2A cleavage sequence reliably co-express two proteins and restore vision to an animal model of LCA1. PLoS One 6:e20553
Semple-Rowland, Susan L; Coggin, William E; Geesey, Mero et al. (2010) Expression characteristics of dual-promoter lentiviral vectors targeting retinal photoreceptors and Müller cells. Mol Vis 16:916-34
Semple-Rowland, Susan L; Eccles, Kristofer S; Humberstone, Elizabeth J (2007) Targeted expression of two proteins in neural retina using self-inactivating, insulated lentiviral vectors carrying two internal independent promoters. Mol Vis 13:2001-11
Haire, Shannon E; Pang, Jijing; Boye, Sanford L et al. (2006) Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 47:3745-53
Williams, Melissa L; Coleman, Jason E; Haire, Shannon E et al. (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201
Zhang, Yan; Semple-Rowland, Susan L (2005) Rhythmic expression of clock-controlled genes in retinal photoreceptors is sensitive to 18-beta-glycyrrhetnic acid and 18-alpha-glycyrrhetnic acid-3-hemisuccinate. Brain Res Mol Brain Res 135:30-9
Coleman, Jason E; Semple-Rowland, Susan L (2005) GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 46:12-6
Coleman, Jason E; Zhang, Yan; Brown, Gary A J et al. (2004) Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol Vis Sci 45:3397-403

Showing the most recent 10 out of 22 publications