Glaucoma is a leading cause of blindness. Diagnosis and monitoring of glaucoma is of particular importance because the onset is insidious and the visual damage is irreversible. The goal of the Advanced Imaging for Glaucoma (AIG) study ( is to improve early detection and long-term monitoring of glaucoma by advancing the technology of optical coherence tomography (OCT), which is uniquely capable of imaging eye structures affected by glaucoma with micrometer precision. In AIG Phase I, very high-speed Fourier-domain (FD) OCT achieved higher diagnostic accuracy than other quantitative imaging technologies. Significantly, glaucoma diagnosis was made using OCT maps of macular ganglion cells and measurement of retinal blood flow. In the proposed Phase II, the next generation OCT hardware and analytic software will be developed. A longitudinal clinical study will demonstrate advantages in the early detection and prediction of disease progression.
The specific aims are: 1. Develop image processing and diagnostic analysis for 3-dimensional (3D) OCT data. We will improve 3D image processing software to detect the loss of ganglion cells, nerve fibers, optic disc rim, and track glaucoma progression. 2. Develop ultrafast OCT systems for imaging the macula and optic nerve head. We will develop the next generation technology that is up to 40 times faster (1 MHz) than current FD-OCT. It will be capable of capturing full tissue volume in 0.1-0.2 second to achieve 3D sampling without significant motion error. 3. Develop Doppler OCT to measure retinal perfusion. Retinal blood flow measurement with Doppler OCT correlates very well with glaucoma status. This ground-breaking advance in functional imaging will be made practical with higher speed and automated software. 4. Evaluate OCT technologies in a longitudinal clinical study. An extension of the ongoing clinical study is proposed. Participants (665 including 400+ already enrolled) in normal, glaucoma suspect, and glaucoma groups will be followed. OCT and other imaging technologies will be compared for diagnostic accuracy, detection of early progression, and prediction of future visual field loss. The impact of intraocular pressure on retinal blood flow and how flow affects the risk of glaucoma will also be studied. Quantitative imaging technologies such as OCT have improved glaucoma management by reducing reliance on insensitive tests such as perimetry and subjective disc grading. The AIG Partnership comprises engineers and clinicians who co-invented OCT. We propose to further improve its performance with higher speed, more sophisticated software, and novel functional measurements. The eventual goal is to save vision by basing glaucoma treatment decisions on speedy and reliable imaging tests.

Public Health Relevance

Glaucoma is a chronic and irreversible degeneration of the retina and optic nerve that is often caught only in the later stages by current standard tests such as visual field and clinical optic disc evaluation. This project aims to improve the detection of glaucoma and the measurement of its progression using optical coherence tomography (OCT), the only imaging technology that can measure retinal degeneration with microscopic resolution. Accurate monitoring of glaucoma with OCT will improve treatment decisions regarding surgery or eye drops, both of which are effective but also carry significant side effects and risks.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BDCN-F (12))
Program Officer
Chin, Hemin R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Martino, Amy Z; Iverson, Shawn; Feuer, William J et al. (2015) Surgical outcomes of superior versus inferior glaucoma drainage device implantation. J Glaucoma 24:32-6
Wang, Xiaogang; Jia, Yali; Spain, Rebecca et al. (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 98:1368-73
Sehi, Mitra; Goharian, Iman; Konduru, Ranjith et al. (2014) Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology 121:750-8
Jia, Yali; Wei, Eric; Wang, Xiaogang et al. (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322-32
Wang, Mingwu; Lu, Ake Tzu-Hui; Varma, Rohit et al. (2014) Combining information from 3 anatomic regions in the diagnosis of glaucoma with time-domain optical coherence tomography. J Glaucoma 23:129-35
Bhavsar, Kavita V; Branchini, Lauren; Shah, Heeral et al. (2014) Choroidal thickness in retinal pigment epithelial tear as measured by spectral domain optical coherence tomography. Retina 34:63-8
Fein, Jordana G; Branchini, Lauren A; Manjunath, Varsha et al. (2014) Analysis of short-term change in subfoveal choroidal thickness in eyes with age-related macular degeneration using optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina 45:32-7
Jia, Yali; Bailey, Steven T; Wilson, David J et al. (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435-44
Iverson, Shawn M; Feuer, William J; Shi, Wei et al. (2014) Frequency of abnormal retinal nerve fibre layer and ganglion cell layer SDOCT scans in healthy eyes and glaucoma suspects in a prospective longitudinal study. Br J Ophthalmol 98:920-5
Adhi, Mehreen; Liu, Jonathan J; Qavi, Ahmed H et al. (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272-1281.e1

Showing the most recent 10 out of 83 publications