Genetic mutations that alter ocular pigmentation produce abnormalities within the developing retina and visual pathways that cause permanent visual impairment. While much is known about the neural phenotype associated with ocular albinism (OA) and related hypopigmentation conditions affecting the retinal pigment epithelium (RPE), how these changes within the RPE affect the nervous system remain an enigma. This research program will directly address these issues, seeking an integrated understanding of the relationship between tyrosinase, melanin synthesis, OA1 signaling, G-protein activation and the downstream effectors that ultimately modulate gene expression in the neural retina. Novel inducible site-specific recombination strategies for generating transgenic mice will be used that permit tissue-specific expression of desired genes at different times during development and control of transgene dosage. Three different Gi protein knockout mice will also be examined to define the Gi protein through which OA1 normally functions, and constitutively active Gi-expressing transgenic mice will be generated and then crossed to Oa1-knockout mice to see whether the Oa1-knockout phenotype can be rescued. The primary neural abnormality associated with ocular hypopigmentation is a defect in axonal navigation at the optic chiasm during development, manifested as a misrouting of optic axons from the temporal retina into the opposite side of the brain. The decussation patterns associated with the retinofugal pathways in these various transgenic and knockout mice will be defined using anterograde and retrograde tract-tracing techniques, while various features associated with their RPE will be quantified, including the degree of tyrosinase expression, total melanin content and melanosomal morphology. Having identified the critical stages during development when an RPE-derived signal affects the neural retina altering decussation patterns at the optic chiasm, a subtractive hybridization strategy combined with microarray analysis will be conducted to identify candidate genes involved in this signaling. Differences in gene expression within the neural retina and in RPE cells will be examined in Oa1-knockout and Gi-knockout mice relative to wild-type control mice, and then compared with patterns of differential gene expression derived from albino mice in which a tyrosinase transgene is activated or remains inactive. Using this combination of approaches drawing on the fields of developmental biology, molecular genetics and neuroanatomy, this research program will identify the critical signaling events initiated within the RPE and ultimately manifested at the optic chiasm. Our studies should lead to the development of new approaches for devising therapeutic strategies based on gene therapy or pharmacological manipulations of Gi signaling in order to prevent the visual impairments in ocular albinism and other hypopigmentation mutations.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY015141-03
Application #
6929014
Study Section
Special Emphasis Panel (ZEY1-VSN (06))
Program Officer
Dudley, Peter A
Project Start
2003-07-01
Project End
2007-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
3
Fiscal Year
2005
Total Cost
$280,669
Indirect Cost
Name
University of California Los Angeles
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Young, Alejandra; Jiang, Meisheng; Wang, Ying et al. (2011) Specific interaction of G*i3 with the Oa1 G-protein coupled receptor controls the size and density of melanosomes in retinal pigment epithelium. PLoS One 6:e24376
Young, Alejandra; Powelson, Elisabeth B; Whitney, Irene E et al. (2008) Involvement of OA1, an intracellular GPCR, and G alpha i3, its binding protein, in melanosomal biogenesis and optic pathway formation. Invest Ophthalmol Vis Sci 49:3245-52