Epithelial-mesenchymal transition (EMT) has been shown to play an important role in the fibroses of multiple organs and tissues, including the ocular lens, where it contributes to both anterior subcapsular cataracts (ASC) and posterior capsular opacification (PCO), also known as secondary cataract. Increased proliferation of lens epithelial cells (LECs), and EMT of LECs into myofibroblasts, involving a loss of the cell-cell adhesion molecule E-cadherin and an induction in ?-smooth muscle actin (?SMA) expression are early events in both ASC and PCO. Transforming growth factor beta (TGF?) is a pleotropic morphogen that has been shown to induce the EMT of LECs and subsequent formation of ASC, as well as, PCO. Using a previously developed rat lens culture model in which exogenous TGF? induces ASC we have shown that treatment with inhibitors to the matrix metalloproteinases (MMP), specifically MMP-2 and MMP-9, suppresses TGF?-induced cataractous changes, including EMT. Studies from the previous grant period further show that these two MMPs likely work cooperatively and/or redundantly in the development of these cataracts. For example, using a model of ASC involving the delivery of AdTGF? to the eye we have shown that MMP-9 KO mice develop cataracts, albeit they are delayed compared to wild-type mice. Thus, inhibiting both MMPs may be required to prevent EMT and subsequent cataractogenesis. The potential mechanism by which these MMPs mediate EMT and cataract formation was identified during the previous funding period and involves disruption of E-cadherin. Preliminary data suggests that disruption and shedding of E-cadherin results in downstream signaling events linked to EMT including nuclear translocation of ?-catenin and the myocardin-related transcription factor (MRTF-A). However, the requirement for these signaling intermediates in ASC and PCO and how MMPs are involved is not known. In the current proposal we investigate these TGF?-mediated signaling pathways using multiple ex vivo and in vivo models of ASC and PCO. In addition, we outline experiments that will directly determine the unique and/or cooperative roles of MMP-2 and MMP-9 in ASC formation. Ultimately, our goal is to define the TGF?- mediated pathways controlling EMT and fibrosis in ASC and PCO in order to design therapeutics for mitigating these diseases.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Araj, Houmam H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mcmaster University
Zip Code
L8 3Z5
Korol, Anna; Pino, Giuseppe; Dwivedi, Dhruva et al. (2014) Matrix metalloproteinase-9-null mice are resistant to TGF-?-induced anterior subcapsular cataract formation. Am J Pathol 184:2001-12
Gupta, Madhuja; Korol, Anna; West-Mays, Judith A (2013) Nuclear translocation of myocardin-related transcription factor-A during transforming growth factor beta-induced epithelial to mesenchymal transition of lens epithelial cells. Mol Vis 19:1017-28
Morarescu, Diana; West-Mays, Judy A; Sheardown, Heather D (2010) Effect of delivery of MMP inhibitors from PDMS as a model IOL material on PCO markers. Biomaterials 31:2399-407
West-Mays, Judith A; Pino, Guiseppe; Lovicu, Frank J (2010) Development and use of the lens epithelial explant system to study lens differentiation and cataractogenesis. Prog Retin Eye Res 29:135-43
Banh, Alice; Deschamps, Paula A; Vijayan, Mathilakath M et al. (2007) The role of Hsp70 and Hsp90 in TGF-beta-induced epithelial-to-mesenchymal transition in rat lens epithelial explants. Mol Vis 13:2248-62
Robertson, Jennifer V; Nathu, Zahra; Najjar, Anas et al. (2007) Adenoviral gene transfer of bioactive TGFbeta1 to the rodent eye as a novel model for anterior subcapsular cataract. Mol Vis 13:457-69
West-Mays, Judith A; Pino, Giuseppe (2007) Matrix Metalloproteinases as Mediators of Primary and Secondary Cataracts. Expert Rev Ophthalmol 2:931-938
Banh, Alice; Deschamps, Paula A; Gauldie, Jack et al. (2006) Lens-specific expression of TGF-beta induces anterior subcapsular cataract formation in the absence of Smad3. Invest Ophthalmol Vis Sci 47:3450-60